• Title/Summary/Keyword: 소성역크기

Search Result 24, Processing Time 0.022 seconds

A Study on the Crack Tip Plastic Region for Stable Crack Growth -304 Stainless Steel- (안정군열성장에 대한 군열선단 소성역에 관한 연구 -304 스테인리스 강-)

  • 황갑운
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.6
    • /
    • pp.1183-1192
    • /
    • 1989
  • 본 논문에서는 평면변형률 상태하에서 안정하게 성장하는 균열선단에 집중 되어있는 강소성역의 해석에 역점을 두어 재결정법과 탄.소성유한요소법을 도입하여 안정 성장균열 선단에 형성되는 균열 성장저항에 직접적인 영향을 미치고 있는 소성 역의 크기나 형태에 대한 실험 및 해석을 하였다.

An Interfacial Crack Model with Inclined Strip Plastic Zones under Mode III Load (모우드 III 하중 하에서 경사진 띠모양의 소성역을 가정한 계면균열 모델)

  • 박재학;엄윤용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.243-251
    • /
    • 1989
  • Assuming plastic zones spreading out on each slip plane of the two materials under out-of-plane shear loading, the size of each plastic zone is computed. The effect of the different frictional shear stresses in the two materials on the size of each plastic zone and the relative displacement at the crack tip are investigated. The relation between the J-integral in this model and the relative displacement at the crack tip is also obtained.

p-Version Finite Element Analysis of Elasto-Plastic Cracked Plates Including Strain Hardening Effects (변형률 경화효과를 고려한 탄소성 균열판의 p-Version 유한요소해석)

  • 우광성;홍종현;윤영필
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.4
    • /
    • pp.537-549
    • /
    • 1999
  • 선형탄성 파괴해석은 균열을 갖는 변형률 경화재료의 파괴거동을 예측하는데 불충분하기 때문에 최근에는 균열 선단 부에서 대규모 소성 역을 갖는 균열 체에 적용할 수 있는 많은 파괴역학개념이 제안되고 있다. 따라서, 본 연구에서는 대규모항복 조건하의 연성파괴를 보이는 평판을 정확하게 해석할 수 있는 새로운 유한요소모델을 제시하고자 한다. 균열 선단 부의 응력 장을 정의하는데 가장 지배적인 파괴매개변수인 J-적분 값과 소성 역의 크기 및 형상을 J-적분법과 등가영역적분법을 통해 파괴거동을 설명할 수 있도록 증분소성이론에 기초를 둔 p-version 유한요소해석이 채택되었다. 제안된 유한요소모델에 의한 수치해석결과는 이론 해와 h-version 유한요소해석과 비교되었다.

  • PDF

The Development of a Non-Linear Finite Element Model for Ductile Fracture Analysis - For Mini-Computer - (연성파괴 해석을 위한 비선형 유한요소 모델의 개발 -소형 컴퓨터를 위한 -)

  • 정세희;조규종
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.25-33
    • /
    • 1986
  • In this paper, the frontal method based elastic-plastic F.E.M. program for mini-computer was developed. Since, the executable source program size was restricted by the system core memory size on the mini-computer, the active variables were memorized by the element base and the nonactive varables were memorized to the external disc file. The active variables of the finally developed program were reduced enough to execute about 1,000 freedom finite element on the mini-computer on which available variables were restricted as 32,767 integers. A modified CT fracture test specimen was examined to test the developed program. The calculated results were compared with experimental results concerning on the crack tip plastic deformation zone. Recrystallization technique was adopted to visualize the intensive plastic deformation regions. The Von-Mises criterion based calculation results were well agreed with the experimental results in the intensive plastic region which was over than 2% offset strain. The F.E.M. results using the developed program were well agreed with the theoritical plastic boundary which was calculated by the stress intensity factor as r$_{p}$=(K$_{1}$$^{2}$/2.pi..sigma.$_{y}$$^{2}$).f(.theta.).).).

Finite Element Analysis for Fatigue Crack Closure Behavior Using Reversed Plastic Zone Size (되풀이 소성영역 크기를 이용한 피로 균열 닫힘 거동의 유한요소해석)

  • Choi, Hyeon-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1703-1711
    • /
    • 2003
  • An elastic-plastic finite element analysis is performed to investigate detailed closure behaviour of fatigue cracks in residual stress fields and the numerical results are compared with experimental results. The finite element analysis performed under plane stress using contact elements can predict fatigue crack closure behaviour. The mesh of constant element size along crack surface can not predict the opening level of fatigue crack. Specially, the mesh of element sizes depending upon the reversed plastic zone size included the effect of crack opening point can precisely predict the opening level. By using the concept of the mesh of element sizes depending upon the reversed plastic zone size included the effect of crack opening point, the opening level of fatigue crack can be determined very well.

Study on Evaluation of Plastic Deformation Zone at Crack Tip for the Multi-Passed Weld Region of the Pressure Vessel Steel Using Nondestructive Method (비파괴법에 의한 압력용기 강 다층용접부의 균열선단에서 소성변형 역성장거동 평가에 관한 연구)

  • Na, Eui-Gyun;Lee, Sang-Guen
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.473-478
    • /
    • 2009
  • The purpose of this study is to evaluate the behaviour of the plastic deformed zone at crack tip on the standard Charpy specimens which were taken from the multi-passed weld block of the pressure vessel steel. Notch was machined on the standard Charpy test specimens and pre-crack which was located around the fusion line was made under the repeat load. Four point bend and acoustic emission tests were carried out simultaneously. The size of plastic region at crack tip was calculated using stress intensity factor. Relationships between characteristics of acoustic emission and plastic zone size at crack tip were discussed through the cumulative AE energy. Regardless of the specimens, AE signals were absent within the elastic region almost and most of AE signals were produced at the plastic deformation region from yield point to the mid-point between yield and maximum load. More AE signals for the weldment were produced compared with the base-metal and PWHT specimen. Relations between plastic deformed zones at crack tip and cumulative AE energy for the weldment and PWHT specimen were different quietly from the base-metal. Besides, number of AE counts for the weldment was the larger than those of the base-metal and PWHT specimen.

Fracture Behavior of Pre-cracked AISI 4130 Specimens by Means of Acoustic Emission and Ultrasonic C-scan Measurements (음향방출과 초음파 C-scan을 이용한 AISI 4130 균열재의 파괴거동 연구)

  • Ong, J.W.;Moon, S.I.;Jeong, H.J.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.3
    • /
    • pp.7-13
    • /
    • 1993
  • Fracture behavior of pre-cracked compact tension specimens made of AISI 4130 steel was investigated using acoustic emission (AE) and ultrasonic C-scan measurements. While each specimen was loaded up to a certain level, various acoustic emission parameters were recorded together with the crack opening displacement (COD). An elastic-plastic finite element analysis was performed to calculate COD and the damage (plastic) zone size ahead of crack tip. Ultrasonic C-scans, in a pulse-echo, immersion mode, were done for mapping the damage zone size. The agreement between the finite element results and the measured COD was satisfactory. Based on AE results, the test specimens were found to show ductile behavior. The slope of the total ringdown counts vs. COD curve was useful to determine the crack initiation. The preliminary C-scan images showed evidence of changes in the amplitude of ultrasonic signal in the damaged region, and the shape and size of the damage zone matched qualitatively with the finite element results. A further work on the damage zone sizing was also pointed out.

  • PDF

Detection and non-propagating cracks of small fatigue crack (미소피로균열의 검출과 정류균열)

  • 이종형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.603-609
    • /
    • 1990
  • Detection and non-propagating cracks of small fatigue crack for smooth and pre-cracked specimens were examined in a carbon steel. The fretting oxide induced crack closure triggered by the roughness induced crack closure has an important role in determing the length. The fatigue limit for the with no cracks or with a short pre-crack is lower at R=-1 than that at R=0. A non-propagating crack are quite different between points near the specimen's surface and those of deepest penetration.

An Evaluation on the Effect of Reversed Plastic Zone on the Fatigue Crack Opening Behavior under 2-D Plane Stress (2차원 평면응력 상태에서 되풀이 소성역이 피로균열 열림 현상에 미치는 영향에 관한 연구)

  • Choi, Hyeon-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1078-1084
    • /
    • 2005
  • The relationship between fatigue crack opening behavior and the reversed plastic zone sizes is studied. An elastic-plastic finite element analysis (FEA) is performed to examine the opening behavior of fatigue crack, where the contact elements are used in the mesh of the track tip area. The smaller element size than reversed plastic zone size is used fer evaluating the distribution of reversed plastic zone. In the author's previous results the FEA could predict the crack opening level, which crack tip elements were in proportion to the theoretical reversed plastic zone size. It is found that the calculated reversed plastic zone size is related to the theoretical reversed plastic zone size and crack opening level. The calculated reversed plastic zone sizes are almost equal to the reversed plastic zone considering crack opening level obtained by experimental results. It can be possible to predict the crack opening level from the reversed plastic zone size calculated by finite element method. We find that the experimental crack opening levels correspond with the opening values of contact nodes on the calculated reversed plastic zone of finite element simulation.

Rheological Models for Describing Fine-laden Debris Flows: Grain-size Effect (세립토 위주의 토석류에 관한 유변학적 모델: 입자크기 효과)

  • Jeong, Sueng-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.6
    • /
    • pp.49-61
    • /
    • 2011
  • This paper presents the applicability of rheological models for describing fine-laden debris flows and analyzes the flow characteristics as a function of grain size. Two types of soil samples were used: (1) clayey soils - Mediterranean Sea clays and (2) silty soils - iron ore tailings from Newfoundland, Canada. Clayey soil samples show a typical shear thinning behavior but silty soil samples exhibit the transition from shear thinning to the Bingham fluid as shear rate is increased. It may be due to the fact that the determination of yield stress and plastic viscosity is strongly dependent upon interstructrual interaction and strength evolution between soil particles. So grain size effect produces different flow curves. For modeling debris flows that are mainly composed of fine-grained sediments (<0.075 mm), we need the yield stress and plastic viscosity to mimic the flow patterns like shape of deposition, thickness, length of debris flow, and so on. These values correlate with the liquidity index. Thus one can estimate the debris flow mobility if one can measure the physical properties.