• Title/Summary/Keyword: 소성붕괴하중

Search Result 53, Processing Time 0.024 seconds

System Reliability Analysis of Midship Sections (선체 중앙 횡단면의 시스템 신뢰성해석)

  • Y.S. Yang;Y.S. Suh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.1
    • /
    • pp.115-124
    • /
    • 1993
  • A structural system reliability analysis is studied for the safety assessment of midship section. Probabilistically dominant collapse modes are generated by Element Replacement Method and Incrimental Load Method. In order to avoid generating the same modes repeatedly, it is branched at final plastic hinge. Using first and second order bound methods, system failure probability of midship section is computed and compared with deterministic load factor method to show the usefulness of the proposed method.

  • PDF

Effect of Geometry Variation on Plastic Collapse of Marine Pipeline (해저배관의 소성붕괴에 대한 기하학적 형상변화의 효과)

  • Baek, Jong-Hyun;Kim, Woo-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.4
    • /
    • pp.45-50
    • /
    • 2010
  • The marine pipelines laid in deep waters were evaluated to verify the resistance on the plastic collapse to heavy ambient external pressure due to hydrostatic pressure. In this study, the plastic collapse behavior of the marine pipe subjected to hydrostatic pressure was evaluated with the ovality and ratio of diameter to thickness in FE analyses. A parametric study was shown that the internal pressure increased the plastic collapse depth by increasing of the resistance to the plastic collapse. It was also shown that the collapse depth of the pipeline having a local ovality was deeper than that of the pipeline having a global ovality. Finally, the plastic collapse depth decreased when either the ratio of diameter to thickness or the ovality increased.

Load-Bearing Capacity of Subsea Pipeline with Variation of Sea Water Depth and Buried Depth (수심과 퇴적 깊이 변화에 따른 해저배관의 하중지지능력 평가)

  • Baek, Jong-Hyun;Kim, Young-Pyo;Kim, Woo-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1131-1137
    • /
    • 2012
  • Subsea pipelines have been operated with buried depths of 1.2-4m underneath the seabed to prevent buoyancy and external impacts. Therefore, they have to show resistance to both the soil load and the hydrostatic pressure. In this study, the structural integrity of a subsea pipeline subjected to soil load and hydrostatic pressure was evaluated by using FE analyses. A parametric study showed that the internal pressure increased the plastic collapse depth by increasing the resistance to plastic collapse. The hoop stress increased with an increase in the buried depth for the same water depth; however, the hoop stress decreased with an increase in the water depth for the same buried depth.

Dynamic Responses of a Rigid-Plastic Cantilever Subject to Impact (충격하중을 받는 외팔보의 동적 강소성 응답)

  • H.W. Choi;J.G. Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.1
    • /
    • pp.72-79
    • /
    • 1998
  • Static deformation theory of elastoplastic structures can be applied only if the magnitude of loading is less than the plastic collapse force $F_c$. However, with impact or explosive blast loading, the structure can be subjected to an intense but short-duration force pulse that exceeds the plastic collapse force and initiates structural collapse. In this paper, the dynamic response of a rigid-perfectly plastic cantilever subject to intense impact loading is examined in terms of the plastic collapse force. When a step loading is applied, the motion of the beam is calculated and analyzed through the non-dimensionalization of variables. It is concluded that the motion of a beam can be characterized as a function of the nondimensionalized force parameter, $f{\equiv}F/F_c$, where $F_c$ represents the critical force for plastic collapse. This result is used to the analysis of the beam motion subject to rectangular force pulse.

  • PDF

Design Concept of Nuclear Pressure Vessels to Protect Against Failure by Plastic Deformation (원자력 압력용기의 소성변형에 의한 파괴방지를 위한 설계개념)

  • Song, Dahl-Ho;Lee, Hae
    • Journal of the KSME
    • /
    • v.33 no.8
    • /
    • pp.728-738
    • /
    • 1993
  • 원자력 압력용기의 소성변형에 의한 파괴의 방지를 위한 설계개념의 요체는 압력용기에 발생하는 응력을 하중형태와 중요도에 따라 분류하고, 분류된 각각의 응력범주에 대해서 극한설계의 개 념에 의한 붕괴하중에 안전계수를 도입한 것이다. 원자력 압력용기에 적용된 안전계수는 재료의 인장가동에 대해서 3이다. 이것은 일반용 압력용기에 대한 안전계수 4보다 적은 값이나, 원자력 압력용기의 소성변형에 의한 파괴방지를 위하여 이미 모든 작용하중에 대하여 응력해석을 수행 하였고 그 결과를 평가한 것이기 때문에 안전계수는 낮더라도 더 안전하다고 할 수 있다.

  • PDF

Plastic collapse behaviour of statically indeterminate beams with a crack under concentrated load (집중하중하의 균열을 갖는 부정정보의 소성붕괴거동)

  • 남기우
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.67-74
    • /
    • 1996
  • The paper focuse on the effect of a crack subjects to collaspe behabiors of statically indeterminate beams under concentrated load. Through the experiment and calculation, it was revealed that the collaspe load of statically indeterminate beams is much higher than that of statically determinate beams. The cumulative AE event counts of statically determinate beams was less than that of statically indeterminate beams, and the center notch beams sas revealed less than that of the side notch beams.

  • PDF

Effect of Thickness Eccentricity on Plastic Collapse of Subsea Pipeline under External Pressure (외압하에서 해저배관의 소성붕괴에 대한 두께 불균일 효과)

  • Baek, Jong-Hyun;Kim, Young-Pyo;Kim, Woo-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.6
    • /
    • pp.14-19
    • /
    • 2011
  • The objective of this study was to investigate the effect of the thickness eccentricity on the collapse pressure of a subsea pipeline subjected to external pressure. The collapse behavior of the subsea pipeline containing initial imperfection was evaluated using elastic-plastic finite element (FE) analyses. API 5L X65 and API 5L X80 Pipelines with the thickness eccentricity values between 4~16% were adopted to investigate the plastic collapse under hydrostatic pressure. A parametric study was shown that the plastic collapse pressure decreased when either the thickness eccentricity or the ratio of diameter to thickness increased.

A Simplified Approach to the Analysis of the Ultimate Compressive Strength of Welded Stiffened Plates (용접된 보강판의 압축 최종 강도의 간이 해석법)

  • C.D. Jang;Seung-Il Seo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.141-154
    • /
    • 1993
  • In this paper, a method to calculate the ultimate compressive strength of welded one-sided stiffened plates simply supported along all edges is proposed. At first initial imperfections such as distortions and residual stresses due to welding are predicted by using simplified methods. Then, the collapse modes of the stiffened plate are assumed and collapse loads for each mode are calculated. Among these loads, the lowest value is selected as the ultimate strength of the plate. Collapse modes are assumed as follows ; (1) Overall buckling of the stiffened plate$\rightarrow$Overall collapse due to stiffener bending (2) Local buckling of the plate part$\rightarrow$Local collapse of the plate part$\rightarrow$Overall collapse due to stiffener yielding (3) Local buckling of the plate part$\rightarrow$Overall collapse due to stiffener berthing (4) Local buckling of the plate part$\rightarrow$Local collapse of the plate part$\rightarrow$Overall collapse due to stiffener tripping. The elastic large deflection analysis based on the Rayleigh-Ritz method is carried out, and plastic analysis assuming hinge lines is also carried out. Collapse load is defined as the cross point of the two analysis curves. This method enables the utimate strength to be calculated with small computing time and a good accuracy. Using the present method, characteristics of the stiffener including torsional rigidity, bending and tripping can also be clarified.

  • PDF

Simulation of Plastic Collapsing Load and Deformation Behaviours(I) (소성 붕괴하중 및 변형거동 해석(1))

  • 김영석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2165-2172
    • /
    • 1995
  • Optimization of mesh discretization has been proposed to improve the accuracy of limit analysis solution of collapse load by using the Rigid Body Spring Model(R. B. S. M) under the plane strain condition. Moreover, the fracture behaviour of materials was investigated by employing the fracture mechanism of a spring connecting the triangular rigid body element. It has been clarified that the collapse load and the geometry of slip boundary for optimized mesh discretization were close to those of the slip line solution. Further, the wedge-shaped fracture of a cylinder under a lateral load and the central fracture of a strip in the drawing process were well simulated.

Analytical Evaluation of Residual Strength for Steel Frame in case of Column Member Loss (기둥손실에 따른 철골프레임 잔존내력의 해석적 평가)

  • Park, Hwon-Mo;Yeshewawork, D.;Kim, Hyun-Soo;Choi, Jae-Hyouk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.675-683
    • /
    • 2011
  • When impacts by falling objects are applied to the structures, vertical resisting member(column or column group) results in progressive collapse. By knowing clearly load-deformation relationship of a structural frame, to prevent progressive collapse by absorbing potential energy of falling objects though column groups are lost by the impact of falling object accidently. If residual strength in vertical direction exceeds vertical load, which the sum of the weight of falling objects and usual supportive vertical load as the result of absorbing released location energy, it does not result in progressive collapse. On the other hand, in case when weight of falling objects is included in usual supportive vertical load. In this paper, 1-story 4-spans model is analyzed by non-linear FEM and to examine the level of deterioration, limit analysis of 1-story 4-spans plane frame was carried out.