• Title/Summary/Keyword: 소성변형모형

Search Result 50, Processing Time 0.024 seconds

Development of ViscoElastoPlastic Continuum Damage (VEPCD) Model for Response Prediction of HMAs under Tensile Loading (인장하중을 받는 아스팔트 혼합물의 점탄소성 모형의 개발)

  • Underwood, B. Shane;Kim, Y. Richard;Seo, Youngguk;Lee, Kwang-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1D
    • /
    • pp.45-55
    • /
    • 2008
  • The objective of this research was to develop a VEPCD (ViscoElastoPlastic Continuum Damage) Model which is used to predict the behavior of asphalt concrete under various loading and temperature conditions. This paper presents the VEPCD model formulated in a tension mode and its validation using four hot mix asphalt (HMA) mixtures: dense-graded HMA, SBS, CR-TB, and Terpolymer. Modelling approaches consist of two components: the ViscoElastic Continuum Damage (VECD) mechanics and the ViscoPlastic (VP) theory. The VECD model was to describe the time-dependent behavior of HMA with growing damage. The irrecoverable (whether time-dependent or independent) strain has been described by the VP model. Based on the strain decomposition principle, these two models are integrated to form the VEPCD model. For validating the VEPCD model, two types of laboratory tests were performed: 1) a constant crosshead strain rate tension test, 2) a fatigue test with randomly selected load levels and frequencies.

The Permanent Deformation of Asphalt Pavement by Artificial Neural Networks (인공신경망을 이용한 아스팔트포장의 소성변형파손모형)

  • Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.3100-3105
    • /
    • 2010
  • The permanent deformation of asphalt pavement is one of the most important load-related distresses in asphalt pavement. In order to evaluate the permanent deformation, the repeated triaxial load test with different temperature and air void of hot mix asphalt was carried out. The permanent deformation prediction model has been validated by the multiple regression approach and the artificial neural networks.

Development of Asphalt Concrete Rutting Model by Triaxial Compression Test (삼축압축시험을 이용한 아스팔트 혼합물의 소성변형 파손모형 개발)

  • Lee, Kwan-Ho;Hyun, Seong-Cheol
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.57-64
    • /
    • 2009
  • This study intends to evaluate of the characteristics of pavement deformation and develop the model for prediction model in the asphalt layer using a regression analysis. In test, there are two different asphalt binders and 5 different aggregate types. The air voids of hot mix asphalt are 6% and 10% for target value. Repeated triaxial compression test with 3 different confining pressures was used for test at 3 different test temperatures. It is going to verify the main parameters for permanent deformation of HMA and to develop the distress model. This paper is to figure out the factor affecting the pavement deformation, and then to develop model the pavement deformation for asphalt mixture. Also, the reliability of prediction model has been studied. The permanent deformation prediction model for asphalt mixtures with temperature, loading time, and air voids has been developed and the proposed permanent deformation prediction model has been validated by using the multiple regression approach which is called Statistical Package for the Social Sciences(SPSS).

Evaluating a Load Limit on Heavy Vehicles in Flexible Pavements (아스팔트 포장구조체에 대한 중차량 제한하중 평가)

  • Park, Seong-Wan;Hwang, Jung Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1D
    • /
    • pp.53-60
    • /
    • 2010
  • The objective of this paper is to evaluate a performance-based load zoning procedure in flexible pavements. Long-term performance in flexible pavements will be evaluated using VESYS type rutting model and Miner s theory on fatigue cracking. Permanent deformation properties such as alpha and gnu, and fatigue cracking properties such as k1 and k2 in asphalt concrete were used respectively. The data from the literatures were also used in predicting performance in flexible pavements for evaluating load restrictions as well as parametric study. Finally, a performance-based load zoning procedure and a simple load limit procedure for load zoning were assessed.

Large Crack Model and Its Numerical Algorithm for Damage Analysis of Dynamically Loaded Structures (동하중을 받는 구조물의 손상해석을 위한 대형균열모형과 수치 알고리즘)

  • Lee, Jee-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.6 s.46
    • /
    • pp.59-65
    • /
    • 2005
  • In this paper a constitutive model for large cracks in concrete and other brittle materials subject to dynamic and cyclic leading is presented. The suggested model is based on the plastic-damage model for cyclic leading. A numerical formulation based on the three-step return-mapping algorithm for the proposed large crack model is also present. The numerical examples show that the present algorithm works appropriately under dynamic leading and should be used in large crack problems to prevent excessive tensive plastic strain development causing unrealistic results.

The Mechanism of Load Resistance and Deformability of Reinforced Concrete Coupling Beams (철근 콘크리트 연결보의 하중 전달 기구와 변형 능력)

  • Hong, Sung-Gul;Jang, Sang-Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.113-123
    • /
    • 2006
  • An experimental investigation on the behavior of reinforced concrete coupling beams is presented. The test variables are the span-to-depth ratio, the ratio of flexural reinforcements and the ratio of shear rebars. The distribution of arch action and truss action which compose the mechanism of shear resistance is discussed. The increase of plastic deformation after yielding transforms the shear transfer by arch action into by truss action. This study proposes the deformation model for reinforced concrete coupling beams considering the bond slip of flexural reinforcement. The strain distribution model of shear reinforcements and flexural reinforcements based on test results is presented. The yielding of flexural reinforcements determines yielding states and the ultimate states of reinforced concrete coupling beam are defined as the ultimate compressive strain of struts and the degradation of compressive strength due to principal tensile strain of struts. The flexural-shear failure mechanism determines the ultimate state of RC coupling beams. It is expected that this model can be applied to displacement-based design methods.

Development of Rutting Model for Asphalt Mixtures using Laboratory and Accelerated Pavement Testing (실내 및 포장가속시험를 이용한 아스팔트 혼합물의 소성변형 모형 개발)

  • Lee, Sang-Yum;Lee, Hyun-Jong;Huh, Jae-Won;Park, Hee-Mun
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.79-89
    • /
    • 2008
  • The pavement performance model is the most important factor to determine the pavement life in the mechanistic-empirical pavement design guide (MEPDG). As part of Korean Pavement Research Program (KPRP), the Korean Pavement Design Guide (KPDG) is currently being developed based on mechanistic-empirical principle. In this paper, the rutting prediction model of asphalt mixtures, one of the pavement performance model, has been developed using triaxial repeated loading testing data. This test was conducted on various types of asphalt mixtures for investigating the rutting characteristics by varying with the temperature and air void. The calibration process was made for the coefficients of rutting prediction model using the accelerated pavement testing data. The accuracy of prediction model can be increased when by considering the effect of individual rutting properties of materials rather than shear stresses with depths.

  • PDF

An Analysis of Deformation on Soft Clay Layer by Model Test (모형실험에 의한 연약점토지반의 변형해석)

  • 강병선
    • Geotechnical Engineering
    • /
    • v.4 no.4
    • /
    • pp.51-60
    • /
    • 1988
  • 기초지반에 대한 응력·변형률관계를 규명하기 위하여 소성론에 기초를 둔 구성방정식이 폭넓게 이용되고 있다. 본문은 성토나 강성기초와 같은 지반구조물을 연약점토지반에 축조하였을 때에 발생하는 변형에 관해 연구코저 한 것이다. 본 연구를 위하여 2차원모형토조를 제작, 재하실험한 시료를 재하실험을통하여 침하, 융기, 측방변위등을 측정하고 이들을 여러구함식과 비교고찰하였다. 구성식으로서는 한계상태개념에 근거를 둔 Cam-clay, Modified Cam-clay그리고 시간의존성을 고려한 탄·정감성 model인 Sakiguchi model을 이용하고 이들을 수치해를 통해 고찰하였다. 본 모형실험에 의하면 변형을 예측하는데 있어서 ModifiedICam-clay model이 Original Cam-clay"model 보다 실측치에 가까웠으며 또한 시간의존성을 고려한 탄·점견성 model인 Sekiguchi model'는 본 실험에서처럼 단기간의 실험에서는 변형의 creep조건을 만족시키지 못하므로 현장조건에 따라 잘- 판단하여 적용하여 야할 것으로 판단 된다.

  • PDF