• Title/Summary/Keyword: 소방도로

Search Result 308, Processing Time 0.024 seconds

A Study on the Inflow Velocity Reduction Measures in Case of Fire Great Depth Underground Double-Deck Tunnel (대심도 복층터널 화재 시 유입풍속 저감방안 연구)

  • Yang, Yong-Won;Moon, Jung-Joo;Shin, Tae-Gyun
    • Fire Science and Engineering
    • /
    • v.30 no.2
    • /
    • pp.81-86
    • /
    • 2016
  • Recently, frequent traffic congestion has occurred in domestic urban roads. As a solution for downtown traffic congestion in domestic urban roads, plans for great depth underground double-deck tunnels have been made. Great depth underground double-deck tunnels that have been planned for passenger cars, has the structure of a network type; the entry of vehicles is carried out in the underground space. In these network great depth underground double-deck tunnels, the cross section and the height of the tunnel are smaller than the general road tunnel, and the smoke of a fire will propagate faster than the evacuation of tunnel passengers by the action of the traffic-ventilation and casualties are expected. Therefore, in the present study, an attempt was made to prevent the delay system for fire smoke diffusion at the time of a fire in a domestic network great depth underground double-deck tunnel according to the area of the tunnel block during the operation of the delay system for fire smoke diffusion to analyze the effects of reducing the inflow velocity. When the area of the tunnel block was not less than 50%, the effect of reducing about 21% of the wind speed acting on the tunnel was significant. If the area is more than 50%, the diffusion rate of fire smoke was reduced by approximately 21%, which will be useful for a safe evacuation.

Work plan for flood disaster management considering climate changes (기후변화를 고려한 풍수해 재난관리 업무방향)

  • Shim, Kee-Oh;Yoo, Byung-Tae;Park, Kyoung-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.337-341
    • /
    • 2009
  • 지구의 평균기온이 지속적으로 상승함에 따라 지구온난화로 인한 기후변화는 지구에 분포되어 있는 극지방의 빙하들을 녹임으로써 지구의 물 순환시스템을 교란시켜 집중호우와 태풍, 가뭄, 낙뢰 등 예측을 불허하는 극한 기상변화를 발생시키고 있다. 기후변화로 인해 바다의 수온이 상승함에 따라 빙하가 녹거나 바닷물이 팽창하여 해수면이 상승하게 되는 바, 1990년 대비 2000년대에 동해바다에서는 상승률이 0.07cm/yr이던것이 0.20cm/yr로 나타났으며, 서해바다에서는 0.14cm/yr이던 것이 0.18cm/yr로 나타났고, 남해바다에서는 0.32cm/yr이던 것이 0.34cm/yr 로 평균상승률이 1990년대에 비해 증가하는 것으로 관측되었다. 본 연구에서는 기후변화로 인한 자연재해 피해를 최소화하기 위해 소방방재청의 현행 업무를 중심으로 재해를 예방하기 위한 풍수해 업무별 추진해야할 연구과제들을 조사 제시하고자 하였다. 기후변화에 따른 재난분야의 정책과 관련된 연구적인 측면의 분야를 제시하기 위하여 최근에 나타난 자연재난 피해현상에 대한 원인 및 대책을 기초로 하여, 재난관리분야에서 추진하고 있는 업무를 계승 발전시킴으로써 기후변화로 인한 피해를 예방 또는 최소화 할 수 있는 방향으로 제시하고자 하였다. 기후변화에 따른 소방방재청의 풍수해 재난관리 분야 종합계획을 제시하기 위해 본 연구에서는 기후변화 관련 최근 국내 외의 동향을 먼저 살펴보았다. 1977년부터 2006년까지 우리나라 최근 30년간의 재해연보에 제시되어 있는 시설물별 피해액을 조사하여 시설물 중 피해액이 많은 순으로 주요피해 시설물을 파악하였다. 여기에서 주요피해 시설물로는 하천, 도로, 소하천, 수리, 농경지, 사방 등의 순으로 나타났다. 이러한 주요시설물에 대한 피해현황을 파악하기 위하여 대규모 풍수해 피해에 대한 현황, 원인분석 및 대책이 제시되어 있는 각종 피해조사 보고서, 연구보고서 및 전문 학술지 기사들을 수집 분석하였으며, 수집된 자료를 토대로 각각의 재해피해현상에 대하여 시설물의 피해현상, 원인 및 대책을 분류하여 분석하고자 한다. 재난관리 분야 중 우수유출저감시설 관련 제시된 업무방향을 보면 침투 저류를 위한 우수유출저감시설의 개발연구, 침수위험지구의 지정기준 등급별 방재대책 방안연구, 유역별 재해위험 저감능력의 평가기준 개발, 단위구역별 우수유출저감시설의 확보기준 연구, 우수유출저감시설의 국내 표준화 방안 연구, 우수유출저감시설 설치자에 대한 인센티브 도입방안 연구, 피해지역의 매입을 통한 저류지화 방안 연구, 우수유출저감시설 설치효과의 교육 홍보 및 우수유출저감시설의 국제 표준화 기준 제정 추진 등이 필요할 것으로 조사되었다. 여기에서 제시된 재난관리 업무분야별 많은 연구과제들이 향후 연구할 수 있는 재원확보로 이어져 재난관리의 업무발전에 도움이 될 수 있도록 하여야 하겠으며, 주요 결론으로는 다음과 같다. 첫째, 우리나라는 기후변화에 대해서는 기존에 소극적으로 대응하였으나 기후변화대책기획단을 만들어 적극적으로 대처하고 있으므로 기후변화와 관련된 여러분야가 활성화 될 것으로 판단된다. 둘째, 국외의 기후변화 대응사례에서 보면 시설물의 규모를 볼 때 큰 규모의 예산을 투입하는 것으로 판단되는바, 이는 향후의 불확실한 기후변화에 대비하는 선진적인 판단으로 검토되어야 할 것이다. 셋째, 풍수해 관련 주요업무 8가지에 대하여 추진해야할 업무방향 48개를 선정 제시하였다.

  • PDF

A Study on Effectiveness for Car-Crash Fires Prevention through a Full-length Speed Enforcement System in Highway Tunnels (고속도로 터널내 차량추돌화재사고를 방지하기 위한 구간과속단속시스템 설치에 관한 통계적 연구)

  • Lee, Young-Jae;Kim, Gab-Cheol;Park, Hyung-Joo
    • Fire Science and Engineering
    • /
    • v.25 no.5
    • /
    • pp.119-127
    • /
    • 2011
  • Because of most notably the increase in vehicular traffic in Korea, as measured by highway transport usage, relief is being sought by expanding the construction of highways after 1970s'. These highways have opened up over 70 % of the mountainous areas in Korea's country side which includes the construction of tunnels. Currently there are 607 tunnels installed that are being maintained and by 2015, under the next medium-term plan, Korea will build an additional 440 tunnels. In addition, the use of 1,000m double-pole tunnels is expected to increase significantly in 256 locations. There is no doubt that these tunnels will relieve traffic congestion and aid improved communications, but halfclosed underground highway tunnels in particular are required to reduce tunnel fires caused by poor vehicle maintenance, and other factors such as speeding motorists that increase the number of vehicular accidents. Double-pole tunnels in 1,000m length over require vehicle drivers to be more cautious in terms of the continuous speed limit, judged by how devastating most of car-crash fires within these tunnels can be. In order to prevent these disasters, a full-length tunnel speed enforcement system should be considered mandatorily in legal clauses.

A Study on the Mechanical and Combustion Characteristics According to Fiber Reinforcements Weight Fraction of FRTP (섬유강화재 함유율에 따른 FRTP의 기계적 특성 및 연소특성에 관한 연구)

  • Kim, Kyoung-Jin;Eom, Sang-Yong;Kim, Ki-Hwan
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.21-28
    • /
    • 2019
  • To examine the mechanical and combustion characteristics of FRTP, either polycarbonate or nylon were used as a matrix, and either glass fiber or carbon fiber were used as the fiber reinforcement. The fiber reinforcement content was differentiated at 0~40 wt%. The tensile strength and heat distortion temperature increased with increasing reinforcement content. When the fiber reinforcement content was above 30 wt%, the flammability rating showed V-0. As the fiber reinforcement content increased from 0 to 40 wt%, the peak heat release rate of polycarbonate decreased by approximately 51% and that of nylon decreased by approximately 24%. The rate of CO generation decreased for a period of time, and then increased. This appears to have resulted from incomplete combustion. The rate of CO2 generation shows a similar tendency with the heat release rate. As fiber reinforcement content levels increased from 0 to 40 wt%, the CO2 peak rate of polycarbonate generation decreased by approximately 50% and that of nylon decreased by 28%.

Classification of Fire Causes in Warehouses Using the TRIZ Technique and Analysis of Preventive Measures Accordingto 4M (TRIZ기법에 의한 물류창고의 화재원인 및 4M에 따른 예방대책 분석)

  • Han, Sang-Hun;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.401-412
    • /
    • 2020
  • This study analyzed the causes of warehouse fires using a creative problem-solving technique called TRIZ. It identified preventive measures by applying 4M. The results are as follows. First, this study examined the inconsistency among the causes of warehouse fires using TRIZ. Second, it analyzed human factors and fire prevention measures in warehouses such as safety standards for managers, and methods for the promotion of safety consciousness among workers, and for the reinforcement of construction technology for sandwich panel workers. Third, it identified the mechanical and facility factors and fire prevention measures in warehouses such as safety facilities, the expanded installation of safety devices, the adoption and development of fire suppression equipment, and the deployment of methods to improve the fire resistance of sandwich panels. Fourth, it presented working and environmental factors and fire prevention measures in warehouses such as the tightening of safety precautions and the supervision of working methods, and setting fire partitions both in loading places and based on performance-based design. Finally, it proposed managerial factors and fire prevention measures in warehouses such as specific targeting for firefighting with low fire hazards, reviewing the material quality regulations of non-combustible or higher for sandwich panels in the specific target of firefighting that cannot apply fire safety standards, installing sprinklers in cold storage, and mandating the installation of automated facilities with retroactive application regardless of the floor area in the warehouse with a sandwich panel structure.

Development of Integrated Management System for Steep Slope Prevention and Management (급경사지 방재 및 관리를 위한 급경사지정보 통합관리시스템 개발)

  • Lee, Kyungchul;Jang, Yonggu;Song, Jihye;Kang, Injoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.9
    • /
    • pp.77-85
    • /
    • 2014
  • Recently, the National Emergency Management Agency of Korea has been operating the National Disaster Management System. Nevertheless, there are numerous difficulties in systematic controlling the steep slope DB promptly, because the system's functions in input and control for steep slope information are merely simple. Futhermore, the hazard degrees of steep slope lands nowadays have risen suddenly in accordance with the increase rate of large scale landslides such as the landslide cases of Umyeonmountain, Chuncheon province and others or sever rain storm cases. these lead to rapid increases in frequencies of nature disasters nationally. therefore, it is needed to develop the GIS-based integrated management system for steep slope information in order to manage disasters in advance or high-degree control. This study shows the national GIS-based integrated management system to prevent the disasters that caused by steep slope lands. The integrated management system developed in this study consists of surface information input modules, realtime DB liaison modules of integrated underground information, V-world background map-based GIS, integrated management system for steep slope information user modules, realtime liaison interface modules designed for utilizing steep slope information. Also, tests about stability of data storage, system stability and consistency of processing speed were performed.

Fire Suppression Test using the Automatic Monitor System for Double-Deck Tunnel (복층터널 자동 모니터 소화설비를 이용한 화재진압 실험)

  • Park, Jin-Ouk;Yoo, Yong-Ho;Kim, Hwi-Seung;Park, Byoung-Jik;Kim, Yang-Kyun
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.40-46
    • /
    • 2017
  • As one of the solutions to deal with economic loss caused by traffic congestion in metropolitan area, a deep underground road has been planned and implemented at home and abroad. The part of them has been pushed ahead with a double-deck scheme which has an advantage in constructability and cost efficiency comparing to traditional road tunnel. However, the double-deck tunnel has a lower floor height than the general road tunnel due to the special structure used as the upper and lower lines by installing the middle slab on one excavation section. Therefore, it is relatively weak against fire accidents and ventilation problems occurring in tunnels. Thus study to develop the life safety system optimized to a double-deck tunnel has been systematically carried out in order to overcome their weak point. In this study, automatic monitoring fire extinguisher (AMFE) is developed to suppress a fire and prevent its spread at early stage of tunnel fire, conducting the performance test through vehicle fire tests as verification. The tests were conducted with AMFE being 30 m apart from the vehicle and 10 m apart from engine room. As a results, it was confirmed that AMFE enables to suppress a fire and prevent its spread in both cases.

Fire Safety Analysis of Fire Suppression System for Aircraft Maintenance Hangar Using Fault Tree Method (Fault Tree를 활용한 항공기 격납고 소화시스템의 화재 안전성 분석)

  • Lee, Jong-Guk
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.67-73
    • /
    • 2017
  • An aircraft maintenance hangar is a building that stores, maintains, and inspects expensive aircraft. The frequency of fire occurrence is low, but the resulting human and material damage can be very serious. Therefore, in this study, we conducted a qualitative analysis of the fire safety of the currently operating fire suppression systems for aircraft maintenance hangars using the Fault Tree method, and then performed a quantitative analysis using the failure rate data for the derived basic events and analyzed the importance of the minimal cut sets. As a result of the qualitative analysis by the minimal cut set, it was found that there were 14 accident paths that could be expanded to a large fire, due to the fire control failure of the aircraft hangar fire suppression system. The quantitative analysis revealed that, the probability of the fire expanding into a large one is $2.08{\times}E-05/day$. The analysis of the importance of the minimal cut set shows that four minimal cut sets, namely the fire detector and foam head action according to the zone and blocking of the foam by the aircraft wing and the fire plume, had the same likelihood of causing the fire to develop into a large one, viz. 24.95% each, which together forms the majority of the likelihood. It was confirmed for the first time by fault tree method that the fire suppression system of aircraft maintenance hangars is not suitable for fires under the aircraft wings and needs to be improved.

Fire Spreading Prevention of Straw-roofing House in Folk Village by Flame Resistant Treatment (민속마을 초가집의 방염에 의한 화재확산방지)

  • Park, Ho-Chun;Kim, Hwang-Jin;Lee, Seung-Hyun;Lee, Sung-Eun;Oh, Kyu-Hyung
    • Fire Science and Engineering
    • /
    • v.24 no.3
    • /
    • pp.52-57
    • /
    • 2010
  • Fire protection countermeasure were considered on the straw thatched roof and wooden structure. For the fire resistant treatment, rice straw was soaked in the fire resistant liquid with different soaking time. After treatment, some rice straw sample was washed with water then the rice straws were tested to check the fire resistance performance. And the wood was soaked in the fire resistant liquid at an atmospheric pressure, vacuum-pressure condition and painted with brush on the surface. To analyse the fire resistant performance of rice straw, ignition delay time was measured under the radiant heat flux of cone heater. And the fire resistant performance of wood samples were tested with 45 degree fire resistant test apparatus and cone heater. Based on the cone heater test, the rice straw which most easily ignitable material shows the longer ignition delay time than not treated ones and even in the water washed straw show a longer ignition delay time than not treated ones. And fire resistant treated woods of vacuum-pressure treated sample showed the most excellent performance on fire resistance. And the fire resistant treated by brush and soaking showed a longer ignition delay time than not treated ones. From this experiment, it was found that a fire resistant treatment of rice straw and wood of the house can be protected from the fire spread.

The Real Scale Fire Test for Fire Safety in Apartment Housing (실물화재실험을 통한 공동주택의 화재안전성 연구)

  • Yoo, Yong-Ho;Kweon, Oh-Sang;Kim, Heung-Youl
    • Fire Science and Engineering
    • /
    • v.23 no.5
    • /
    • pp.57-65
    • /
    • 2009
  • This study was intended to conduct a Real-scale fire test to predict the fire behavior by unit space at the apartment building where a huge casualties and injuries are likely. After setting the inflammables inside the house, the test aimed to identify the fire characteristics to each unit item was carried out. The house was divided into 4 unit space such as kitchen, living room, bedroom and a study for a real scale fire test. As a result, bedroom reached to flashover state in 5minutes after setting the fire, indicating a rapid fire growth such as 7433.3kW of maximum thermal emissivity, 578.6ppm of carbon monoxide, 1.25ppm of carbon dioxide and $1,350^{\circ}C$ of maximum indoor temperature. Particularly, the fire growth was made up to critical temperature which might cause a severe damage to the people within 3minutes, if the fire were not extinguished at inflammable space at the early stage of fire, which stressed the need of early response. The result of a real scale fire test could be compared with the outcome of expanded simulation test and used in predicting the fire spread at the space for different use.