• Title/Summary/Keyword: 셀 불안정성

Search Result 19, Processing Time 0.026 seconds

Effects of Hydrocarbon Addition on Cellular Instabilities in Expanding Syngas-Air Spherical Premixed Flames (합성가스와 공기를 혼합한 예혼합화염의 셀 불안정성에 있어서 탄화수소 계 연료첨가에 대한 효과)

  • Vu, Tran Manh;Song, Won-Sik;Park, Jeong;Kwon, Oh-Boong;Bae, Dae-Seok;Yun, Jin-Han;Keel, Sang-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.179-188
    • /
    • 2011
  • Experiments were conducted in a constant-pressure combustion chamber to investigate the effects of hydrocarbon addition on cellular instabilities of syngas-air flames. The measured laminar burning velocities were compared with the predicted results computed using reliable kinetic mechanisms with detailed transport and chemistry. The cellular instabilities that included hydrodynamic and diffusional-thermal instabilities of the hydrocarbon-added syngas-air flames were identified and evaluated. Further, experimentally measured critical Peclet numbers for fuel-lean flames were compared with the predicted results. Experimental results showed that the laminar burning velocities decreased significantly with an increase in the amount of hydrocarbon added in the reactant mixtures. With addition of propane and butane, the propensity for cell formation was significantly diminished whereas the cellular instabilities for methane-added syngas-air flames were not suppressed.

Experimental Study on Cellular Instabilities in Diluted Syngas-Air Premixed Flames (희석제가 첨가된 합성가스-공기 예혼합화염에 있어서 셀 불안정성에 관한 실험적 연구)

  • Vu, Tran Manh;Song, Won-Sik;Park, Jeong;Kim, Jeong-Soo;Yun, Jin-Han;Keel, Sang-In
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.5
    • /
    • pp.72-83
    • /
    • 2010
  • Experiments were conducted to investigate the effects of added diluents (carbon dioxide, nitrogen, and helium) on cellular instabilities in outwardly propagating spherical syngas-air premixed flames. Laminar burning velocities and Markstein lengths were measured by analyzing high-speed schlieren images at various diluent concentrations and equivalence ratios. Experimental results showed substantial reduction of the laminar burning velocities and of the Markstein lengths with the diluent additions in the fuel blends. Effective Lewis numbers of helium-diluted syngas-air flames increased but those of carbon dioxide- and nitrogen-diluted syngas-air flames decreased in increase of diluents in the reactant mixtures. With helium diluent, the propensity for cells formation was significantly diminished, whereas the cellular instabilities for carbon dioxide- and nitrogen-diluted syngas-air flames were not suppressed.

Linear Stability Analysis of Cellular Counterflow Diffusion Flames with Radiation Heat Loss (복사 열손실을 받는 셀모양 대향류 확산화염의 선형 안정성 해석)

  • Lee, Su Ryong
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.2
    • /
    • pp.42-50
    • /
    • 2013
  • Linear stability analysis of radiating counterflow diffusion flames is numerically conducted to examine the instability characteristics of cellular patterns. Lewis number is assumed to be 0.5 to consider diffusional-thermal instability. Near kinetic limit extinction regime, growth rates of disturbances always have real eigen-values and neutral stability condition of planar disturbances perfectly falls into quasi-steady extinction. Cellular instability of disturbance with transverse direction occurs just before steady extinction. However, near radiative limit extinction regime, the eigenvalues are complex and pulsating instability of planar disturbances appears prior to steady extinction. Cellular instability occurs before the onset of planar pulsating instability, which means the extension of flammability.

Investigation of Premixed Flame Instability with Heat and Momentum Losses (열 및 운동량 손실이 예혼합화염의 연소불안정성에 미치는 영향에 관한 연구)

  • Kang Sang Hun;Baek Seung Wook;Im Hong Geun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.101-119
    • /
    • 2005
  • For MEMS applications, the effects of the momentum and heat loss on the stability of laminar premixed flames in a narrow channel are investigated by high-fidelity numerical simulations. A general finding is that momentum loss promotes the Saffman-Taylor (S-T) instability which is additive to the Darrieus-Landau (D-L) instabilities, while the heat loss effects result in an enhancement of the diffusive-thermal (D-T) instability. These effects are also valid in nonlinear behavior of the premixed flame. The simulations of multiple cell interactions are also conducted with heat and momentum loss effects.

Numerical Analysis of Characteristics of Cellular Counterflow Diffusion Flames near Radiative Extinction Limit (복사 열손실에 의한 소염근처에서 셀모양 대향류 확산화염의 특성에 대한 수치해석)

  • Lee, Su Ryong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.6
    • /
    • pp.493-500
    • /
    • 2014
  • Nonlinear characteristics of cellular counterflow diffusion flame near the radiative extinction limit at large Damk$\ddot{o}$hler number are numerically investigated. Lewis number is assumed to be 0.5 and flame evolution is calculated by imposing an infinitesimal disturbance to a one-dimensional(1-D) steady state flame. The early stage of nonlinear development is very similar to that predicted in a linear stability analysis. The disturbance with the wavenumber of the fastest growing mode emerges and grows gradually. Eventual, an alternating pattern of reacting and quenching stripes is developed. The cellular flame temperature is higher than that of 1-D flame because of the gain of the total enthalpy. As the Damk$\ddot{o}$hler number is further increased, the shape of the cell becomes circular to increase the surface area per unit reacting volume. The cellular flames do not extinguish but survive even above the 1-D steady state extinction condition.

Flame Instability in Heptane Pool Fires Near Extinction (소화근처 헵탄 풀화재의 화염불안정성)

  • Jeong, Tae Hee;Lee, Eui Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1193-1199
    • /
    • 2012
  • A cup burner experiment was performed to investigate the effect of the oxidizer velocity and concentration on flame instability near extinction. Heptane was used as a fuel and air diluted by nitrogen and carbon dioxide was used in the oxidizer stream. Two types of flame instabilities at the flame base and at axial downstream were observed near extinction. The instability at the flame base could be characterized by cell, swing, and rotation modes, and the cell mode changed to the rotation mode through the swing mode as the oxidizer velocity increased. To assess the parameters for the flame instability, the initial mixture strengths, Lewis number, and adiabatic flame temperature were investigated under each condition. The Lewis number might be the most important among them, but it is impossible to generalize because of the insufficient number of cases. Furthermore, the axial periodic flickering motion disappeared at low and high oxidizer velocities near extinction. This resulted from the fact that low oxidizer velocity induced evaporated fuel velocity below the critical velocity and high velocity made the reacting fuel velocity comparable.

A Visualization of the Propane/Air Premixed Flame Interacting with an Ultrasonic Standing-wave by Schlieren Photography (정상초음파가 개재하는 프로판/공기 예혼합화염의 슐리렌기법에 의한 가시화)

  • Lee, Sang Shin;Kim, Jeong Soo;Lee, Do Hyong
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.1
    • /
    • pp.22-27
    • /
    • 2013
  • An investigation into the influence of ultrasonic standing wave on the structural behavior of propane/air premixed flame has been made to get a clue to the combustion reaction acceleration and combustion instability. Visualization technique utilizing the Schlieren photography was employed for the observation of structural variation of the flame reaction zone. Evolutionary characteristics of the flame front were caught by the high-speed Schlieren image, through which local flame velocity of the moving front were analyzed in detail.

A Structural Behavior of the Propane/Air Premixed Flame Interacting with an Ultrasonic Standing-wave (정상초음파가 개재하는 프로판/공기 예혼합화염의 구조 거동)

  • Lee, Sang-Shin;Seo, Hang-Seok;Kim, Jeong-Soo;Lee, Do-Hyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.294-299
    • /
    • 2012
  • An investigation into the influence of ultrasonic standing wave on the structural behavior of propane/air premixed flame has been made to get a clue to the combustion reaction acceleration and combustion instability, as well. Visualization technique utilizing the Schlieren method was employed for the observation of structural variation of the premixed flame. The flame shape and propagation velocity were measured according to the variation of equivalence ratio. It was found that the standing wave distorted the flame front and expedited a transition to the flame with turbulent nature.

  • PDF

Diffusion-flame instability in the premixed-flame regime (예혼합화염 영역에서 확산화염의 불안정성에 관한 연구)

  • Lee, Su-Ryong;Kim, Jong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1218-1229
    • /
    • 1997
  • The diffusional-thermal instability of diffusion flames in the premixed-flame regime is studied in a constant-density two-dimensional counterflow diffusion-flame configuration, to investigate the instability mechanism by which periodic wrinkling, travelling or pulsating of the reaction sheet can occur. Attention is focused on flames with small departures of the Lewis number from unity and with small values of the stoichiometric mixture fraction, so that the premixed-flame regime can be employed for activation-energy asymptotics. Cellular patterns will occur near quasisteady extinction when the Lewis number of the more completely consumed reactant is less than a critical value( ~ =0.7). Parametric studies for the instability onset conditions show that flames with smaller values of the Lewis number and stoichiometric mixture fraction and with larger values of the Zel'dovich number tend to be more unstable. For Lewis number greater than unity, near-extinction flame are found to exhibit either travelling instability or pulsating instability.

Thermal instability during the melting process in an isothermally heated horizontal cylinder (등온가열 수평원관내 융해과정동안의 열적 불안정성)

  • Jeong, Jae-Dong;Yu, Ho-Seon;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.2046-2056
    • /
    • 1996
  • The constrained melting inside an isothermally heated horizontal cylinder has been repeatedly investigated in many studies only for the moderate Rayleigh numbers. This study extends the range of Rayleigh numbers to systematically investigate the transition during melting processes, especially focusing on the complex multi-cellular flow pattern and thermal instability. The enthalpy-porosity formulation, with appropriate source terms to account for the phase change, is employed. For low Rayleigh numbers, initially developed single-cell base flow keeps the flow stable. For moderate Rayleigh numbers, even small disturbances in balance between thermal buoyance force and viscous force result in branched flow structure. For high Rayleight numbers, Benard type convection is found to develop within a narrow gap between thee wall and the unmelted solid. The marginal Rayleigh number and the corresponding wave number are in excellent agreement with those from linear stability theory.