• Title/Summary/Keyword: 셀렉터

Search Result 4, Processing Time 0.015 seconds

회전형 세정수 제어시스템의 성능향상에 관한 연구

  • 윤소남;안병규;류재섭;우민호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.97-97
    • /
    • 2004
  • 본 연구에서 대상으로 하는 회전형 세정수 제어시스템은 비데용으로 사용되는 것으로, 크게 스테핑 모터부와 스테핑 모터에 의해서 구동되는 회전형 셀렉터부로 나눌 수 있으며, 셀렉터부는 비데, 일반세정, 국부세정, 건조의 4가지의 기능을 수행하는 구조로 되어있다. Fig. 1에 보이는 구조에서 상부셀렉터(upper selector)는 하부셀렉터(base selector)와 내부 자석사이에 위치해 있으며, 스테핑 모터의 초기 설정된 입력펄수 수에 비례하여 회전운동을 하고 해당 분사지점에 위치하게 된다.(중략)

  • PDF

Selector Processor Allocation Algorithm for Reducing the Call Blocking Rate of Multimedia Service in WCDMA IMT-2000 Systems (비동기 IMT-2000 시스템에서 멀티미디어 서비스 호 차단율 개선을 위한 셀렉터 프로세서 자원할당 방안)

  • Han, Jung-Hee
    • IE interfaces
    • /
    • v.17 no.4
    • /
    • pp.466-471
    • /
    • 2004
  • In this paper, I develop a simple dynamic resource allocation algorithm that reduces the call blocking rate by improving the resource utilization of the WCDMA (Wideband Code Division Multiple Access) systems under multimedia service environment. Simulation results show that the proposed algorithm significantly reduces the blocking rate of high speed multimedia calls. The algorithm developed in this paper is currently working in the commercial WCDMA IMT-2000 system.

A 32${\times}$32-b Multiplier Using a New Method to Reduce a Compression Level of Partial Products (부분곱 압축단을 줄인 32${\times}$32 비트 곱셈기)

  • 홍상민;김병민;정인호;조태원
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.6
    • /
    • pp.447-458
    • /
    • 2003
  • A high speed multiplier is essential basic building block for digital signal processors today. Typically iterative algorithms in Signal processing applications are realized which need a large number of multiply, add and accumulate operations. This paper describes a macro block of a parallel structured multiplier which has adopted a 32$\times$32-b regularly structured tree (RST). To improve the speed of the tree part, modified partial product generation method has been devised at architecture level. This reduces the 4 levels of compression stage to 3 levels, and propagation delay in Wallace tree structure by utilizing 4-2 compressor as well. Furthermore, this enables tree part to be combined with four modular block to construct a CSA tree (carry save adder tree). Therefore, combined with four modular block to construct a CSA tree (carry save adder tree). Therefore, multiplier architecture can be regularly laid out with same modules composed of Booth selectors, compressors and Modified Partial Product Generators (MPPG). At the circuit level new Booth selector with less transistors and encoder are proposed. The reduction in the number of transistors in Booth selector has a greater impact on the total transistor count. The transistor count of designed selector is 9 using PTL(Pass Transistor Logic). This reduces the transistor count by 50% as compared with that of the conventional one. The designed multiplier in 0.25${\mu}{\textrm}{m}$ technology, 2.5V, 1-poly and 5-metal CMOS process is simulated by Hspice and Epic. Delay is 4.2㎱ and average power consumes 1.81㎽/MHz. This result is far better than conventional multiplier with equal or better than the best one published.

An Implementation of Low Power MAC using Improvement of Multiply/Subtract Operation Method and PTL Circuit Design Methodology (승/감산 연산방법의 개선 및 PTL회로설계 기법을 이용한 저전력 MAC의 구현)

  • Sim, Gi-Hak;O, Ik-Gyun;Hong, Sang-Min;Yu, Beom-Seon;Lee, Gi-Yeong;Jo, Tae-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.4
    • /
    • pp.60-70
    • /
    • 2000
  • An 8$\times$8+20-bit MAC is designed with low power design methodologies at each of the system design levels. At algorithm level, a new method for multipl $y_tract operation is proposed, and it saves the transistor counts over conventional methods in hardware realization. A new Booth selector circuit using NMOS pass-transistor logic is also proposed at circuit level. It is superior to other circuits designed by CMOS in power-delay-product. And at architecture level, we adopted an ELM adder that is known to be the most efficient in power consumption, operating frequency, area and design regularity as the final adder. For registers, dynamic CMOS single-edge triggered flip-flops are used because they need less transistors per bit. To increase the operating frequency 2-stage pipeline architecture is adopted, and fast 4:2 compressors are applied in Wallace tree block. As a simulation result, the designed MAC in 0.6${\mu}{\textrm}{m}$ 1-poly 3-metal CMOS process is operated at 200MHz, 3.3V and consumed 35㎽ of power in multiply operation, and operated at 100MHz consuming 29㎽ in MAC operations, respectively.ly.

  • PDF