• Title/Summary/Keyword: 센서모델

Search Result 1,972, Processing Time 0.027 seconds

Accuracy analysis of the Orbit-based Sensor Modeling with various GCP configurations (기준점 배치에 따른 궤도기반 센서모델의 정확도 분석)

  • Kim, Dong-Wook;Kim, Hyun-Suk;Kim, Tae-Jung
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.207-212
    • /
    • 2008
  • 연구에서는 SPOT-3 인공위성 영상으로부터 얻어진 영상 스테레오 스트립과 GCP(Ground Control Point)자료를 이용하여 다양한 GCP배치에 따른 궤도기반 센서모델의 정확성에 대해 분석하였다. 실험에 사용된 기준점자료는 춘천지역에서부터 나주지역에 이르기 까지 약 420km 길이의 지역에 대해 GPS측량을 통해 획득하였다. 궤도기반 센서모델에 적용된 미지수는 위성의 위치와 속도, 자세를 표현하는 방정식의 계수를 미지수로 선택하여 일곱 가지 방식으로 조합하였다. 실험은 우선 모델점의 위치를 일곱 가지 경우로 결정하고 각 경우에 대해 일정한 개수의 모델점을 선택하였다. 그리고 각 경우의 모델점의 위치에 대해 궤도기반 센서모델의 미지수 조합 모델을 각 각 다르게 적용해 본 후 그 결과를 시각적, 수치적으로 분석해 보았다. 실험 결과 모델점의 위치에 관계 없이 궤도기반 모델에 적용할 수 있는 높은 정확도를 나타내는 미지수 조합모델을 찾아낼 수가 있었고, 여러 가지 모델점의 위치를 궤도기반 센서모델에 적용해 본 결과 지리적, 시간적, 경제적 효율성을 갖는 최적의 미지수 조합을 찾을 수가 있었다.

  • PDF

Comparison of Position-Rotation Models and Orbit-Attitude Models with SPOT images (SPOT 위성영상에서의 위치-회전각 모델과 궤도-자세각 모델의 비교)

  • Kim Tae-Jung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.1
    • /
    • pp.47-55
    • /
    • 2006
  • This paper investigates the performance of sensor models based on satellite position and rotation angles and sensor models based on satellite orbit and attitude angles. We analyze the performance with respect to the accuracy of bundle adjustment and the accuracy of exterior orientation estimation. In particular, as one way to analyze the latter, we establish sensor models with respect to one image and apply the models to other scenes that have been acquired from the same orbit. Experiment results indicated that fer the sole purpose of bundle adjustment accuracy one could use both position-rotation models and orbit-attitude models. The accuracy of estimating exterior orientation parameters appeared similar for both models when analysis was performed based on single scene. However, when multiple scenes within the same orbital segment were used for analysis, the orbit-attitude model with attitude biases as unknowns showed the most accurate results.

Design and Implementation of Sensor Registry Data Model for IoT Environment (IoT 환경을 위한 센서 레지스트리 데이터 모델의 설계 및 구현)

  • Lee, Sukhoon;Jeong, Dongwon;Jung, Hyunjun;Baik, Doo-Kwon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.5
    • /
    • pp.221-230
    • /
    • 2016
  • With emerging the Internet of Things (IoT) paradigm, the sensor network and sensor platform technologies have been changed according to exploding amount of sensors. Sensor Registry System (SRS) as a sensor platform is a system that registers and manages sensor metadata for consistent semantic interpretation in heterogeneous sensor networks. However, the SRS is unsuitable for the IoT environment. Therefore, this paper proposes sensor registry data model to register and manager sensor information in the IoT environment. We analyze Semantic Sensor Network Ontology (SSNO) for improving the existed SRS, and design metamodel based on the analysis result. We also build tables in a relational database using the designed metamodel, then implement SRS as a web application. This paper applies the SSNO and sensor ontology examples with translating into the proposed model in order to verify the suitability of the proposed sensor registry data model. As the evaluation result, the proposed model shows abundant expression of semantics by comparison with existed models.

Predicting fire development using sensor-linked simulation (센서연동 시뮬레이션을 이용한 화재 예측)

  • Koo, Sung-Han;Welch, Stephen
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.47-52
    • /
    • 2011
  • 컴퓨터 시뮬레이션과 건물의 센서를 접목한 센서연동 화재모델을 개발하였다. 화재 발생 시 건물 내 상태를 센서로 측정하며 이는 실시간으로 화재모델에 주입이 된다. 모델이 도출하는 시나리오와 센서 측정값을 비교분석하여 모델의 입력 변수를 조율하며 궁극적으로 모델이 실제 화재와 유사한 시나리오를 도출할 수 있도록 한다. 실제 규모의 화재 실험을 실시하였고, 센서연동 화재모델이 화재의 시작위치와 건물 내 출입문의 개폐 상태를 추정할 수 있음을 보였다.

  • PDF

Investigation on the Accuracy of bundle Adjustments and Exterior Orientation Parameter Estimation of Linear Pushbroom Sensor Models (선형 푸시브룸 센서모델의 번들조정 정확도 및 외부표정요소추정 정확도 분석)

  • Kim Tae Jung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.2
    • /
    • pp.137-145
    • /
    • 2005
  • In this paper, we investigate the accuracy of various sensor models developed for linear pushbroom satellite images. We define the accuracy of a sensor model in two aspects: the accuracy of bundle adjustments and the accuracy of estimating exterior orientation parameters. The first accuracy has been analyzed and reported frequently whereas the second accuracy has somewhat been neglected. We argue that the second accuracy is as important as the first one. The second accuracy describes a model's ability to predict satellite orbit and attitude, which has many direct and indirect applications. Analysis was carried out on the traditional collinearity-based sensor models and orbit-based sensor models. Collinearity-based models were originally developed for aerial photos and modified for linear pushbroom-type satellite images. Orbit-based models have been used within satellite communities for satellite control and orbit determination. Models were tested with two Kompsat-1 EOC scenes and GPS-driven control points. Test results showed that orbit-based models produced better estimation of exterior orientation parameters while maintained comparable accuracy on bundle adjustments.

Investigation of Sensor Models for Precise Geolocation of GOES-9 Images (GOES-9 영상의 정밀기하보정을 위한 여러 센서모델 분석)

  • Hur, Dong-Seok;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.4
    • /
    • pp.285-294
    • /
    • 2006
  • A numerical formula that presents relationship between a point of a satellite image and its ground position is called a sensor model. For precise geolocation of satellite images, we need an error-free sensor model. However, the sensor model based on GOES ephemeris data has some error, in particular after Image Motion Compensation (IMC) mechanism has been turned off. To solve this problem, we investigated three sensor models: collinearity model, direct linear transform (DLT) model and orbit-based model. We applied matching between GOES images and global coastline database and used successful results as control points. With control points we improved the initial image geolocation accuracy using the three models. We compared results from three sensor models. As a result, we showed that the orbit-based model is a suitable sensor model for precise geolocation of GOES-9 Images.

Accuracy analysis of SPOT Orbit Modeling Using Orbit-Attitude Models (궤도기반 센서모델을 이용한 SPOT 위성 궤도모델링 정확도 분석)

  • Kim, Hyun-Suk;Kim, Tae-Jung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.4 s.38
    • /
    • pp.27-36
    • /
    • 2006
  • Conventionally, in order to get accurate geolocation of satellite images we need a set of ground control points with respect to individual scenes. In this paper, we tested the possibilities of modeling satellite orbits from individual scenes by establishing a sensor model for one scene and by applying the model, which was derived from the same orbital segment, to other scenes that has been acquired from the same orbital segment. We investigated orbit-attitude models with several interpolation methods and with various parameter sets to be adjusted. We used 7 satellite images of SPOT-3 with a length of 420km and ground control points acquired from GPS surveying. Results of the conventional individual scene modeling hardly introduced differences among different interpolation methods and different adjustment parameter sets. As the results of orbit modeling, the best model was the one with Lagrange interpolation for position/velocity and linear interpolation for attitude and with position/angle bias as parameter sets. The best model showed that it is possible to model orbital segments of 420km with ground control points measured within one scene (60km).

  • PDF

RPC Model Generation from the Physical Sensor Model (영상의 물리적 센서모델을 이용한 RPC 모델 추출)

  • Kim, Hye-Jin;Kim, Jae-Bin;Kim, Yong-Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.4 s.27
    • /
    • pp.21-27
    • /
    • 2003
  • The rational polynomial coefficients(RPC) model is a generalized sensor model that is used as an alternative for the physical sensor model for IKONOS-2 and QuickBird. As the number of sensors increases along with greater complexity, and as the need for standard sensor model has become important, the applicability of the RPC model is also increasing. The RPC model can be substituted for all sensor models, such as the projective camera the linear pushbroom sensor and the SAR This paper is aimed at generating a RPC model from the physical sensor model of the KOMPSAT-1(Korean Multi-Purpose Satellite) and aerial photography. The KOMPSAT-1 collects $510{\sim}730nm$ panchromatic images with a ground sample distance (GSD) of 6.6m and a swath width of 17 km by pushbroom scanning. We generated the RPC from a physical sensor model of KOMPSAT-1 and aerial photography. The iterative least square solution based on Levenberg-Marquardt algorithm is used to estimate the RPC. In addition, data normalization and regularization are applied to improve the accuracy and minimize noise. And the accuracy of the test was evaluated based on the 2-D image coordinates. From this test, we were able to find that the RPC model is suitable for both KOMPSAT-1 and aerial photography.

  • PDF

Comparison of Single-Sensor Stereo Model and Dual-Sensor Stereo Model with High-Resolution Satellite Imagery (고해상도 위성영상에서의 동종센서 스테레오 모델과 이종센서 스테레오 모델의 비교)

  • Jeong, Jaehoon
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.421-432
    • /
    • 2015
  • There are significant differences in geometric property and stereo model accuracy between single-sensor stereo that uses two images taken by stereo acquisition mechanism within identical sensor and dual-sensor stereo that randomly combines two images taken from two different sensors. This paper compares the two types of stereo pairs thoroughly. For experiment, two single-sensor stereo pairs and four dual-sensor stereo pairs were constituted using SPOT-5 stereo and KOMPSAT-2 stereo covering same area. While the two single-sensor stereos have stable geometry, the dual-sensor stereos produced two stable and two unstable geometries. In particular, the unstable geometry led to a decrease in stereo model accuracy of the dual-sensor stereos. The two types of stereo pairs were also compared under the stable geometry. Overall, single-sensor stereos performed better than dual-sensor stereos for vertical mapping, but dual-sensor stereos was more accurate for horizontal mapping. This paper has revealed the differences of two types of stereos with their geometric properties and positioning accuracies, suggesting important considerations for handling satellite stereo images, particularly for dual-satellite stereo images.

Epipolar Geometry for Gupta and Hartley Sensor Model without the Ephemeris Data (위성 궤도 정보를 사용하지 않는 Gupta와 Hartley 센서모델의 에피폴라 기하모델)

  • 이해연;박원규
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.4
    • /
    • pp.233-242
    • /
    • 2002
  • In this paper, an epipolar model without the ephemeris data is proposed. Also, various epipolar models such as the epipolar geometry of perspective sensor, the one proposed by Gupta and Hartley and the one based on the Orun and Natarajan's sensor model are reviewed and their accuracy are quantitatively analyzed using devised measure. Modeling data from ground control points, ground control points, ephemeris data and independent checking points are selected on SPOT over Taejon and Boryung area and KOMPSAT over Taejon and Nonsan area. Based on the results, the epipolar model of perspective sensor and the one by Gupta and Hartley have the average accuracy within 1 pixel but show high errors in several checking points. The proposed epipolarity model provides better results than that of perspective sensor and by Gupta and Hartley. Also, it shows the accuracy similar to the one based on Orun and Natarajan's sensor model.