• Title/Summary/Keyword: 세포 외 기질

Search Result 204, Processing Time 0.026 seconds

Physical and Chemical Effects of Extracellular Matrix on the Growth of Cardiomyocytes (HL-1) (세포외 기질 물질의 물리·화학적 영향에 따른 심근세포(HL-1)의 성장 연구)

  • Hong, Yoon-Mi;Choi, Seong-Kyun;Kim, Sun-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1229-1235
    • /
    • 2011
  • The extracellular matrix (ECM) is a key factor affecting cell growth and adhesion to the culture surface, and it is also important for maintaining the innate characteristics of cells. Here, we describe the effects of the ECM on cardiomyocyte (HL-1 cell line) growth, viability, phenotype, and contractile ability. Five different ECM materials were investigated to analyze their effects on the cell growth. The physical morphology of the ECM-coated surfaces was scanned with an atomic force microscope (AFM), and the attachment, growth, proliferation, viability, and phenotype of the cells were analyzed using fluorescence immunostaining and an inverted phase contrast microscope.

RBC 운전조건 변화에 따른 생물막의 형성 및 조성 변화 특성

  • 최정순;남귀숙;박근태;손홍주;이상준
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2001.05a
    • /
    • pp.162-163
    • /
    • 2001
  • 기질농도, HRT, 온도, pH, $Ca^{2+}$ 농도변화에 따른 반응기의 생물막형성과 세포외고분자물질의 조성변화에 따른 기질 제거율을 살펴보았다. 그 결과 반응기의 초기 생물막 형성은 각 조건에 따라서 약간의 차이를 보였다. 반응기 운전 초기에 균에 의해 생산된 세포외고분자물질은 점액질의 형태로 세포벽에 부착되어 주위환경의 해로운 요인으로부터 세포를 보호하는 기능을 가지고 있어 생물막 형성을 촉진시키는 역할을 하였으나, 생물막이 안정화된 후에는 오히려 생물막의 산소투과와 영양분의 접촉을 떨어뜨리는 역할을 하여 기질 제거율을 저하시키는 작용을 하는 것으로 나타났다.

  • PDF

Stimulation of the Extracellular Matrix Production in Dermal Fibroblasts by Areca catechu Extract (진피섬유모세포에서 대복피추출물의 세포외기질 합성 촉진 효과)

  • Lee, Min-Ho;Kim, Hyung-Jin;Jung, Hyun-Ah;Lee, Young-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1857-1862
    • /
    • 2013
  • Dermal fibroblasts produce the many components of the extracellular matrix (ECM) that are needed to maintain connective tissue integrity and repair tissue injuries. This study investigated the effects of Areca catechu extract (ACE) on dermal fibroblast cell activation. Cultured human dermal fibroblasts were treated with ACE, and then ECM production was determined by ELISA, Western blot and RT-PCR. ACE significantly accelerated the production of type 1 collagen, fibronectin, and transforming growth factor (TGF)-${\beta}1$ by ELISA and type 1 collagen by Western blot assay. ACE also increased the gene expression of COL1A1, TGF-${\beta}1$, keratinocyte growth factor (KGF) and insulin growth factor (IGF)-1. These results suggest that ACE has the potential to stimulate ECM production and that it might be suitable for maintaining skin texture.

Promoting effects of Transforming growth Factor-$\beta$2 on Chondrogenic Differentiation in vitro (Transforming Growth Factor-$\beta$2에 의한 연골세포 분화 촉진 효과)

  • 정재창;손종경박대규강신성
    • The Korean Journal of Zoology
    • /
    • v.38 no.1
    • /
    • pp.20-25
    • /
    • 1995
  • 계배 limb bud 간충직 연골원성 세포로부터 연골세포로의 분화에 미치는 transforming growth factor-f2(TGF-$\beta$2)의 영향을 알아보기 위하여, Hamburger-Hamilton stages 23/24의 간충직 세포들을 미세배양법으로 배양하면서. TGF-$\beta$2의 농도 및 처리시간에 따른 연골세포의 분화에 미치는 영향을 조사하였다 그 결과 TGF-$\beta$2는 배양 첫 24시간 동안 1-2 ng/ml의 농도로 처리하였을 때 가장 효과적으로 연골세포의 분화를 촉진하였으며, 또한 TGF-$\beta$2의 처리군에서 배양 3일째에 tsss) sulfate의 glycosaminoglvcan으로의 유입량이 현저히 증가함을 보였다 한편. 배양 48시간내에TGF-$\beta$2를 처리한 경우 분화를 촉진 유도한 반면, 배양 48시간 이후에 처리하였을 때에는 분화 촉진 효과가 나타나지 않았다. 이상의 결과로부터 TGF-$\beta$2는 연골원 세포의 분화 초기단계에 세포외기질의 합성을 촉진시켜 세포응축을 유발하고. 세포-세포 및 세포-세포외기질의 상호작용을 증대시킴으로써 연골세포로의 분화를 촉진시킬 것으로 추정되었다.

  • PDF

Altering of Collagens in Early Pregnant Mouse Uterus (착상전 생쥐 자궁에서 콜라겐의 변화)

  • Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.11 no.1
    • /
    • pp.1-11
    • /
    • 2007
  • Specific endometrial preparation should occur during periimplantation period. That is a progress of serial differentiation and is absolute in implantation of embryo and successful pregnancy. Remodeling of tissues shown during embryogenesis is regulated by various factors including extracellular matrix (ECM). Marked changes during pregnancy are including embryo migration, decidual response, and differentiation of placenta in placental animals including human. These changes to successful implantation in embryo and uterus have to prepare the competence for attachment of embryo and uterus, and invasion defense of uterus. During these changes, ECM dramatically changes for maintaining the uterine and embryonic functions. The major component of most connective tissue is collagens. It is very complex and hard to explore the mechanisms for ECM modulation. Recently using high throughput methodology, PCR-select cDNA subtraction method, microarray, many candidate genes have been identified. Steroid hormones have fundamental role in implantation and maintenance of pregnancy. Dermatopontin, a regulator of collagen accumulation, is regulated spatio-temporally in the uterus by primarily progesterone through progesterone receptors at the time of implantation. Modulation of extracellular matrix is critically regulated by cascade of gene net-works which are regulated by cascade of sex steroid hormones. Pathological regulation of uterine extracellular matrix reported in diabetic patients. To know the extracellular modulation is essential to understanding implantation, feto-placental development and overcome the paths involved in female reproduction. Though ECM composed with very various components and it is complex, the present review focused on the fate of collagens during periimplantation period.

  • PDF

Laminin-1 Expression in Bone Marrow Stromal Cells of Cyclophosphamide-treated Rat (Cyclophosphamide가 흰쥐 골수의 기질세포에서 Laminin-1의 발현에 미치는 영향)

  • Lee, Chang-Hun;Chung, Ho-Sam;Paik, Doo-Jin;Hwang, Se-Jin;Kim, Won-Kyu;Youn, Jee-Hee;Kim, Chong-Kwan
    • Applied Microscopy
    • /
    • v.32 no.4
    • /
    • pp.385-398
    • /
    • 2002
  • The purpose of the present study is to investigate whether stromal cells supporting specific microenvironment for hematopoiesis of bone marrow are affected by toxicants and therapeutic drugs such as antibiotics and anticancer drugs and whether laminin-1 is associated with such effects. SD rats were intraperitoneally injected with 75 mg/kg of cyclophosphamide which is widely used to treat infant's solid tumor, leukemia and myeloma and sacrificed after 3 days, 1 week, 3 weeks or 5 weeks of injection. The bone marrow extracted and paraffin-sectioned was analyzed using immunohistochemical staining. A part of tissues was subjected to electron microscopy following reaction with rabbit anti-laminin antibody, biotinylated goat anti-rabbit IgG conjugated with 12 nm gold particles, and staining with uranyl acetate. 1. The bone marrow tissue at day 3 post injection with cyclophosphamide displayed dilated venous sinus, partial necrotic death, and decreased number of hematopoietic cells. Laminin-1 was intensively stained in the reticular and adipose tissues. 2. Up to 5 weeks post injection, laminin-1 was stained at a low level in the stromal tissue of bone marrow and the number of hematopoietic cell was increased. 3. Deposition of the gold particle which represents laminin-1 expression was observed at the highest level in the stromal cells of bone marrow obtained 3 days after injection, and decreased after 1 to 5 weeks. These results suggest that stromal cells which play a role in supporting microenvironment for bone marrow hematopoiesis augment induction of laminin-1 expression and activation upon administration of cyclophosphamide.

Diverse Mechanisms of Relaxin's Action in the Regulation of Smooth Muscles and Extracellular Matrix of Vasculature and Fibrosis (혈관과 섬유증의 평활근 및 세포외기질 조절에 대한 릴랙신의 다양한 작용기전)

  • Min, Gyesik
    • Journal of Life Science
    • /
    • v.32 no.2
    • /
    • pp.175-188
    • /
    • 2022
  • Relaxin has been demonstrated to have regulatory functions on both the smooth muscle and extracellular matrix (ECM) of blood vessels and fibrotic organs. The diverse mechanisms by which relaxin acts on small resistance arteries and fibrotic organs, including the bladder, are reviewed here. Relaxin induces vasodilation by inhibiting the contractility of vascular smooth muscles and by increasing the passive compliance of vessel walls through the reduction of ECM components, such as collagen. The primary cellular mechanism whereby relaxin induces arterial vasodilation is mediated by the endothelium-dependent production of nitric oxide (NO) through the activation of RXFP1/PI3K, Akt phosphorylation, and eNOS. In addition, relaxin triggers different alternative pathways to enhance the vasodilation of renal and mesenteric arteries. In small renal arteries, relaxin stimulates the activation of the endothelial MMPs and EtB receptors and the production of VEGF and PlGF to inhibit myogenic contractility and collagen deposition, thereby bringing about vasodilation. Conversely, in small mesenteric arteries, relaxin augments bradykinin (BK)-evoked relaxation in a time-dependent manner. Whereas the rapid enhancement of the BK-mediated relaxation is dependent on IKCa channels and subsequent EDH induction, the sustained relaxation due to BK depends on COX activation and PGI2. The anti-fibrotic effects of relaxin are mediated by inhibiting the invasion of inflammatory immune cells, the endothelial-to-mesenchymal transition (EndMT), and the differentiation and activation of myofibroblasts. Relaxin also activates the NOS/NO/cGMP/PKG-1 pathways in myofibroblasts to suppress the TGF-β1-induced activation of ERK1/2 and Smad2/3 signaling and deposition of ECM collagen.

A Kinetic Study for Exopolysaccharide Production in Submerged Mycelial Culture of an Entomopathogenic Fungus Paecilomyces tenuipes C240 (동충하초 Paecilomyces tenuipes C240의 균사체 배양에 의한 세포외 다당체 생산의 동력학적 연구)

  • Xu Chung Ping;Yun Jong Won
    • Journal of Life Science
    • /
    • v.15 no.1 s.68
    • /
    • pp.15-20
    • /
    • 2005
  • The unstructured model was tested to describe mycelial growth, exopolysaccharide formation, and substrate consumption in submerged mycelial culture of Paeeiliomyees tenuipes C240. The Logistic equation for mycelial growth, the Luedeking-Piret equation for exopolysaccharide formation, and Luedeking­Piret-like equations for glucose consumptions were successfully incorporated into the model. The value of the key kinetic constants were: maximum specific growth rate ${\mu}m,\;0.7281\;h^{-1};$ growth­associated constant for exopolysaccharide production $(\alpha),\;0.1743g(g\;cells)^{-1}$; non-growth associated constant for exopolysaccharide production $(\beta),\;0.0019g(g\;cells)^{-1}\;;$ maintenance coefficient $(m_s),\;0.0572g\;(g\;cells)^{-1}$. When compared with batch experimental data, the model successfully provided a reasonable description for each parameter during the entire growth phase. The model showed that the production of exopolysaccharide in P. tenuipes C240 was growth-associated. The model tested in the present study can be applied to the design, scale-up, and control of fermentation process for other kinds of basidiomycetes or ascomycetes.

Production of Mycelium and Expolysaccharides by Fed-batch Culture of Agaricus blazei (Agaricus blazei의 유가식 배양을 통한 균사체 및 세포외 다당체 생산)

  • Kim Hyun Han;Na Jeong-Geol;Chang Yong Keun;Lee Sang Jong
    • KSBB Journal
    • /
    • v.19 no.6 s.89
    • /
    • pp.457-461
    • /
    • 2004
  • DO-stat fed-batch cultures of Agaricus blazei were carried out using various feeding solutions, for the production of mycelial biomass and exopolysaccharides (EPS). It was observed to be more effective to use a feeding solution containing both carbon and nitrogen sources than that containing only carbon source. The best result was obtained when a feeding solution containing 450 g/l glucose, 60 g/l yeast extract, 30 g/l soytone peptone was used. The maxium mycelial biomass and EPS concentrations were 36.5 g/l and 10.9 g/l, respectively, at 100 hours of cultivation. The mycelial and EPS productivities were 0.37 g/l-h and 0.11 g/l-h, respectively. As compared with the batch culture, the mycelial biomass concentration and its productivity were 6.0- and 2.2-folds increased, respectively. The EPS concentration and its productivity were increased by 4.7 times and 1.8 times, respectively.