• Title/Summary/Keyword: 세장비가 큰 날개

Search Result 6, Processing Time 0.026 seconds

Fluid-Structure Interaction Analysis of High Aspect Ratio Wing for the Prediction of Aero-elasticity (유체-구조 연계 해석기법을 이용한 세장비가 큰 비행체 날개의 공탄성 해석)

  • Lee, Ki-Du;Lee, Young-Shin;Lee, Dae-Yearl;Lee, In-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.6
    • /
    • pp.547-556
    • /
    • 2010
  • For the safety of aircraft and accuracy of bombs, many companies have researched the new concept of adaptive kit to flying-bombs. For the long distance flying, it's normally used deployed high-aspect ratio wing because of limited volume. The probabilities of large elastic deformation and flutter are increased due to decreased stiffness of high-aspect ratio wing. In this paper, computational fluid dynamics and computational structure dynamics interaction methodology are applied for prediction of aerodynamic characteristics. FLUENT and ABAQUS are used to calculate fluid and structural dynamics. Code-bridge was made base on the compactly supported radial basis function to execute interpolation and mapping. There are some differences between rigid body and fluid-structure interaction analysis which are results of aerodynamics characteristics due to structural deformation. Small successive vibration was observed by interaction.

A Study on Manufacture of Integrated Composite Wing with High Aspect Ratio (고 세장비 일체형 복합재 날개 제작 연구)

  • Joo, Young-Sik;Jun, Oo-Chul;Byun, Kwan-Hwa;Cho, Chang-Min;Han, Jin-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.127-133
    • /
    • 2013
  • In this paper, the study for the manufacture of the integrated composite wing is performed. The wing has a pivoting structure and high aspect ratio to increase lift drag ratio. The wing is designed with carbon fiber composite because the wing needs to be light and have sufficient strength and stiffness to satisfy structural design requirements. The number of structural members is decreased by part integration to reduce manufacturing cost and the wing is manufactured with the integrated molding process by an autoclave. The material properties are identified by the coupon tests and the structural strength and stiffness are verified through the component tests.

A Study on Stress Recovery Analysis of Dimensionally Reducible Composite Beam Structure with High Aspect Ratio using VABS (VABS를 이용한 높은 세장비를 가진 복합재료 보 구조의 차원축소 및 응력복원 해석기법에 대한 연구)

  • Ahn, Sang Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.405-411
    • /
    • 2016
  • This paper presented the theory related to a two dimensional linear cross-sectional analysis, recovery relationship and a one-dimensional nonlinear beam analysis for composite beam with initial twist and high aspect ratio. Using VABS including related theory, preceding research data of the composite wing structure has been modeled and compared. Cross-sectional analysis was performed and 1-D beam was modeled at cutting point including all the details of real geometry and material. The 3-D strain distribution and margin of safety at recovery point was calculated based on the global behavior of the 1-D beam analysis and visualize numerical results.

Computation of Energy Release Rates for Slender Beam through Recovery Analysis and Virtual Crack Closure Technique (차원 복원해석과 가상균열닫힘 기법을 이용한 종방향 균열을 가진 세장비가 큰 보의 에너지 해방률 계산)

  • Jang, Jun Hwan;Koo, Hoi-Min;Ahn, Sang Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.1
    • /
    • pp.31-37
    • /
    • 2017
  • In this paper, computation results of reducible modeling, stress recovery and energy release rate were compared with the results of VABS, Virtual Crack Closure Technique. The result of stress recovery analysis for 1-D model including the stiffness matrix is compared with stress results of three-dimensional 3-D FEM. Energy release rate of composite beam with longitudinal cracks is calculated and compare verifications of numerical analysis results of 3-D FEM and VABS. The procedure of calculating energy release rate through dimensional reduction and stress recovery is intended to be efficient and be utilized in the life-cycle of high-altitude uav's wing, wind blades and tilt rotor blade.

Numerical simulation of the aerodynamic characteristics on the grid-fin adapted sub-munition with low aspect ratio under transonic condition (그리드핀을 적용한 작은 세장비를 갖는 자탄의 천음속 공력특성 전산해석)

  • Yoo, Jae-Hun;Kim, Chang Kee;Choi, Yoon Jeong;Lim, Ye Seul
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.23-33
    • /
    • 2019
  • A sub-munition which has low aspect ratio does not have flight stability and control of drag force under free-fall condition. In order to satisfy those problems, fin, which is called grid-fin, is designed instead of conventional flight fins and adapted to the sub-munition. The base model of the sub-munition is firstly set and numerical simulation of the model is conducted under transonic condition that is free-fall range of the sub-munition. Wind test is secondly performed to verify the simulation result. The result shows that grid fin adapted sub-munition has high drag force, but the flight stability is still needed. In order to enhance the flight stability, two additional grid-fins are designed which modify web-thickness and numerical simulations of modified models are conducted. As the results, the thinnest web-thickness grid-fin has the highest flight stability and still maintains high drag coefficient. Based on these results, design of grid-fin adapted sub-munition is completed, the path trajectory of the sub-munition can be predicted with acquired aerodynamic datum and it is expected that grid fin can be used to various shape of the flight vehicle and bomb.

Thermal Stress Analysis of Composite Beam through Dimension Reduction and Recovery Relation (차원축소와 복원관계를 통한 복합재료 보의 열응력 해석)

  • Jang, Jun Hwan;Ahn, Sang Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.381-387
    • /
    • 2017
  • Fiber-reinforced composites not only have a direction of thermal expansion coefficient, but also inevitably suffer thermal stress effects due to the difference between the manufacturing process temperature and the actual use temperature. The damage caused by thermal stress is more prominent in the case of thick composite laminates, which are increasingly applied in the aerospace industry, and have a great influence on the mechanical function and fracture strength of the laminates. In this study, the dimensional reduction and thermal stress recovery theory of composite beam structure having high slenderness ratio is introduced and show the efficiency and accuracy of the thermal stress comparison results between the 3-D finite element model and the dimension reduction beam model. Efficient recovery analysis study will be introduced by reconstructing the thermal stress of the composite beam section applied to the thermal environment by constructing the dimensional reduction modeling and recovery relations.