• Title/Summary/Keyword: 세기조절방사선치료(IMRT)

Search Result 117, Processing Time 0.026 seconds

Evaluation of the dose distribution in Mapcheck using Enhanced Dynamic Wedge (Enhanced Dynamic Wedge를 사용한 Mapcheck에서의 선량분포 평가)

  • Kang, Su-Man;Jang, Eun-Sun;Lee, Byung-Koo;Jung, Bong-Jae;Shin, Jung-Sub;Park, Cheol-Woo
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.5
    • /
    • pp.343-349
    • /
    • 2012
  • Intensity Modulated Radiotherapy (IMRT) is increasing its use recently due to its benefits of minimizing the dose on surrounding normal organs and being able to target a high dose specifically to the tumor. The study aims to measure and evaluate the dose distribution according to its dynamic changes in Mapcheck. In order to verify the dose distribution by EDW angle($10^{\circ}$,$15^{\circ}$,$20^{\circ}$,$25^{\circ}$,$30^{\circ}$,$45^{\circ}$,$60^{\circ}$), field size (asymmetric field) and depth changes (1.5 cm, 5.0 cm) using IMRT in Clinac ix, a solid phantom was placed on the Mapcheck and 100MU was exposed by 6 MV, 10MV X-ray. Using a 6MV, 10MV energy, the percentage depth dose according to a dynamic changes at a maximum dose depth (1.5 cm) and at 5.0 cm depth showed the value difference of maximum 0.6%, less than 1%, which was calculated by a treatment program device considering the maximum dose depth at the center as 100%, the percentage depth dose was in the range between 2.4% and 7.2%. Also, the maximum value difference of a percentage depth dose was 4.1% in Y2-OUT direction, and 1.7% in Y1-IN direction. When treating a patient using a wedge, it is considered that using an enhanced dynamic wedge is effective to reduce the scattered dose which induces unnecessary dose to the surroundings. In particular, when treating a patient at clinic, a treatment must be performed considering that the wedge dose in a toe direction is higher than the dose in a heel direction.

Neutron dosimetry depending on the number of portals for prostate cancer IMRT(Intensity-Modulated Radiation Therapy) (전립선암의 세기조절 방사선치료 시 조사문수별 중성자선량 평가)

  • Lee, Joo-Ah;Son, Soon-Yong;Min, Jung-Whan;Choi, Kwan-Woo;Na, Sa-Ra;Jeong, Hoi-Woun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3734-3740
    • /
    • 2014
  • The aim of this study was provide basic information and establish the criteria in radiation therapy planning by measuring the absorbed neutron dose of normal tissues and lesions according to the number of portals. From September 2013 to January 2014, 20 patients who were diagnosed with prostate cancer and were previously treated with radiation therapy were replanned retrospectively to measure the absorbed neutron dose distribution according to the number of portals. The absorbed neutron dose was measured in each of the 5, 7 and 9 portals using a 15 MV energy, which meant a therapeutic dose of 220 cGy. The optical stimulation luminescence dosimeter was separated by 20cm and 60cm away from the center of the field of view. As a result, the average radiation dose in the abdomen appeared to have a positive relationship with the number of portals, which was statistically significant (p<.05). The average radiation dose was $4.34{\pm}1.08$. The average radiation dose in the thyroid was $2.71{\pm}.37$. Although it showed a positive relationship with the number of portals, it did not have statistical significance. The number of portals and the neutron dose depending on the position showed a significant positive relationship, particularly in the abdomen. As a result of linear regression analysis, as the number of the portal increased in steps, the average volume of the neutrons increased significantly (0.416 times). In conclusion, efficient selection of the number of portals is needed considering the difference in the absorbed neutron dose in the normal tissues depending on the number of the portals.

IMRT and IMRS Checking the Dose Distribution in the Small Field Evaluation of Measurement by Changes in SAD (IMRT 및 IMRS에서 Small Field의 선량분포 확인시 SAD 변화에 따른 측정의 유용성 평가)

  • Ko, Seung-Young;Kim, Sung-Joon;Park, Gir-Yong;Son, Mi-Suk;Lee, Nam-Ki;Kim, Jin-Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.1
    • /
    • pp.33-39
    • /
    • 2010
  • Purpose: It is very important to confirm conformance of dose distribution that is formed with treatment planning from IMRS or IMRT. It has been a problem dropped accuracy and conformance when the field size is getting smaller because of character of the 2D ion chamber. Verification of MatriXX Phantom dose distribution with a change in the SAD. Dose distribution measurement and analysis to improve the accuracy and should be useful to evaluate the award. Materials and Methods: A use of Novalis linear accelerator 6 MV photon beams. In general, IMRS were 25 patients with small field size. The selected patients were divided into three groups on the basis of the field size. SAD was changed from 80 to 130 cm and field size to determine the dose distribution to the change, each dose was measured using MatriXX Phantom. Analysis of measured values obtained from the program for each patient through the treatment planning system comparison and analysis of the dose distribution and gamma values were expressed. Result: SAD 80, 100, and 120 cm in size in the gamma value to the investigation of patients less than $3\;cm^2$ average 0.939, 0.969, and 0.979, respectively. Patients with more than $5\;cm^2$ 0.962, 0.983, and 0.988, respectively. $5\;cm^2$ or more patients 0.982, 0.990, and 0.992, respectively. Conclusion: The error rate of less than $3\;cm^2$ field size is increased rapidly. If the field size is increased, resolution is increased by 2D ion chambers. It has been approved that it can be credible if it is around $3\;cm^2$ when measuring dose distribution using MatriXX. Adjusting geometric field size by changing SAD is likely to be very useful when you measure dose distribution using MatriXX.

  • PDF

Evaluation of Dose Change by Using the Deformable Image Registration (DIR) on the Intensity Modulated Radiation Therapy (IMRT) with Glottis Cancer (성문암 세기조절 방사선치료에서 변형영상정합을 이용한 선량변화 평가)

  • Kim, Woo Chul;Min, Chul Kee;Lee, Suk;Choi, Sang Hyoun;Cho, Kwang Hwan;Jung, Jae Hong;Kim, Eun Seog;Yeo, Seung-Gu;Kwon, Soo-Il;Lee, Kil-Dong
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.167-175
    • /
    • 2014
  • The purpose of this study is to evaluate the variation of the dose which is delivered to the patients with glottis cancer under IMRT (intensity modulated radiation therapy) by using the 3D registration with CBCT (cone beam CT) images and the DIR (deformable image registration) techniques. The CBCT images which were obtained at a one-week interval were reconstructed by using B-spline algorithm in DIR system, and doses were recalculated based on the newly obtained CBCT images. The dose distributions to the tumor and the critical organs were compared with reference. For the change of volume depending on weight at 3 to 5 weeks, there was increased of 1.38~2.04 kg on average. For the body surface depending on weight, there was decreased of 2.1 mm. The dose with transmitted to the carotid since three weeks was increased compared be more than 8.76% planned, and the thyroid gland was decreased to 26.4%. For the physical evaluation factors of the tumor, PITV, TCI, rDHI, mDHI, and CN were decreased to 4.32%, 5.78%, 44.54%, 12.32%, and 7.11%, respectively. Moreover, $D_{max}$, $D_{mean}$, $V_{67.50}$, and $D_{95}$ for PTV were increased or decreased to 2.99%, 1.52%, 5.78%, and 11.94%, respectively. Although there was no change of volume depending on weight, the change of body types occurred, and IMRT with the narrow composure margin sensitively responded to such a changing. For the glottis IMRT, the patient's weight changes should be observed and recorded to evaluate the actual dose distribution by using the DIR techniques, and more the adaptive treatment planning during the treatment course is needed to deliver the accurate dose to the patients.

Quality Assurance of Multileaf Collimator Using Electronic Portal Imaging (전자포탈영상을 이용한 다엽시준기의 정도관리)

  • ;Jason W Sohn
    • Progress in Medical Physics
    • /
    • v.14 no.3
    • /
    • pp.151-160
    • /
    • 2003
  • The application of more complex radiotherapy techniques using multileaf collimation (MLC), such as 3D conformal radiation therapy and intensity-modulated radiation therapy (IMRT), has increased the significance of verifying leaf position and motion. Due to thier reliability and empirical robustness, quality assurance (QA) of MLC. However easy use and the ability to provide digital data of electronic portal imaging devices (EPIDs) have attracted attention to portal films as an alternatives to films for routine qualify assurance, despite concerns about their clinical feasibility, efficacy, and the cost to benefit ratio. In this study, we developed method for daily QA of MLC using electronic portal images (EPIs). EPID availability for routine QA was verified by comparing of the portal films, which were simultaneously obtained when radiation was delivered and known prescription input to MLC controller. Specially designed two-test patterns of dynamic MLC were applied for image acquisition. Quantitative off-line analysis using an edge detection algorithm enhanced the verification procedure as well as on-line qualitative visual assessment. In conclusion, the availability of EPI was enough for daily QA of MLC leaf position with the accuracy of portal films.

  • PDF

Estimation of Jaw and MLC Transmission Factor Obtained by the Auto-modeling Process in the Pinnacle3 Treatment Planning System (피나클치료계획시스템에서 자동모델화과정으로 얻은 Jaw와 다엽콜리메이터의 투과 계수 평가)

  • Hwang, Tae-Jin;Kang, Sei-Kwon;Cheong, Kwang-Ho;Park, So-Ah;Lee, Me-Yeon;Kim, Kyoung-Ju;Oh, Do-Hoon;Bae, Hoon-Sik;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.269-276
    • /
    • 2009
  • Radiation treatment techniques using photon beam such as three-dimensional conformal radiation therapy (3D-CRT) as well as intensity modulated radiotherapy treatment (IMRT) demand accurate dose calculation in order to increase target coverage and spare healthy tissue. Both jaw collimator and multi-leaf collimators (MLCs) for photon beams have been used to achieve such goals. In the Pinnacle3 treatment planning system (TPS), which we are using in our clinics, a set of model parameters like jaw collimator transmission factor (JTF) and MLC transmission factor (MLCTF) are determined from the measured data because it is using a model-based photon dose algorithm. However, model parameters obtained by this auto-modeling process can be different from those by direct measurement, which can have a dosimetric effect on the dose distribution. In this paper we estimated JTF and MLCTF obtained by the auto-modeling process in the Pinnacle3 TPS. At first, we obtained JTF and MLCTF by direct measurement, which were the ratio of the output at the reference depth under the closed jaw collimator (MLCs for MLCTF) to that at the same depth with the field size $10{\times}10\;cm^2$ in the water phantom. And then JTF and MLCTF were also obtained by auto-modeling process. And we evaluated the dose difference through phantom and patient study in the 3D-CRT plan. For direct measurement, JTF was 0.001966 for 6 MV and 0.002971 for 10 MV, and MLCTF was 0.01657 for 6 MV and 0.01925 for 10 MV. On the other hand, for auto-modeling process, JTF was 0.001983 for 6 MV and 0.010431 for 10 MV, and MLCTF was 0.00188 for 6 MV and 0.00453 for 10 MV. JTF and MLCTF by direct measurement were very different from those by auto-modeling process and even more reasonable considering each beam quality of 6 MV and 10 MV. These different parameters affect the dose in the low-dose region. Since the wrong estimation of JTF and MLCTF can lead some dosimetric error, comparison of direct measurement and auto-modeling of JTF and MLCTF would be helpful during the beam commissioning.

  • PDF

Compare to Evaluate the Imaging dose of MVCT and CBCT (Tomotherapy MVCT와 Linac CBCT의 Imaging dose 비교평가)

  • Yoon, Bo Reum;Hong, Mi Lan;Ahn, Jong Ho;Song, Ki Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.83-89
    • /
    • 2014
  • Purpose : In case of the intensity modulated radiation therapy (IMRT) using Tomotherapy and linear accelerator (Linac), it was to compare and to evaluate the imaging dose of MVCT and CBCT that were performed daily for the correct set up of the patient. Materials and Methods : The human body model Phantom (Anderson rando Phantom, USA) was divided into the three parts as Head, Thorax, pelvis, and after GafChromic EBT3 film cut to the size of $0.5{\times}0.5cm2$.in the center of the recording area were situated on the ant, post, left, and right surface of the phantom and 2cm in depth from the ant, post, left, right, and center surface of the phantom, the surface dose and inner dose were measured repeatedly three times, respectively, using the tomotherapy (Hi Art) and the OBI of NovalisTx. The measured film calculated the output value by RIP version6.0 and then the average value of the dose was calculated by the one-way analysis of variance. Results : Using the human body model phantom, the results of MVCT and CBCT performance were that measurements of MVCT inner dose were showed $15.43cGy{\pm}6.05$ in the head, $16.62cGy{\pm}3.08$ in the thorax, $16.81cGy{\pm}5.24$ in the pelvis, and measurements of CBCT inner dose were showed $13.28{\pm}3.68$ in the head, from $13.66{\pm}4.04$ in the thorax, $15.52{\pm}3.52$ in the pelvis. The measurements of surface dose were showed in case of MVCT performance, $11.64{\pm}4.05$ in the head, $12.16{\pm}4.38$ in the thorax, $12.05{\pm}2.71$ in the pelvis, and in case of CBCT performance, $14.59{\pm}3.51$ in the head, $15.82{\pm}2.89$ in the thorax, $17.48{\pm}2.80$ in the pelvis, respectively. Conclusion : In case of Inner dose, the MVCT using MV energy showed higher than the CBCT using kV energy at 1.16 times in the head, at 1.22 times in the thorax, at 1.08 times in the pelvis, and in case of surface dose, the CBCT was higher than MVCT, at 1.25 times in the head, at 1.30 times in the thorax, at 1.45 times in the pelvis. Imaging dose was a small amount compared to the therapeutic dose but it was thought to affect partially to normal tissue because it was done in daily schedule. However, IMRT treatment was necessarily parallel with the IGRT treatment through the image-guide to minimize errors between planned and actual treatment. Thus, to minimize imaging dose that the patients receive, when planning the treatment, it should be set up a treatment plan considering imaging dose, or it must be performed by minimizing the scan range when shooting MVCT.

Development of Adjustable Head holder Couch in H&N Cancer Radiation Therapy (두경부암 방사선 치료 시 Set-Up 조정 Head Holder 장치의 개발)

  • Shim, JaeGoo;Song, KiWon;Kim, JinMan;Park, MyoungHwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.43-50
    • /
    • 2014
  • In case of all patients who receive radiation therapy, a treatment plan is established and all steps of treatment are planned in the same geometrical condition. In case of head and neck cancer patients who undergo simulated treatment through computed tomography (CT), patients are fixed onto a table for planning, but laid on the top of the treatment table in the radiation therapy room. This study excogitated and fabricated an adjustable holder for head and neck cancer patients to fix patient's position and geometrical discrepancies when performing radiation therapy on head and neck cancer patients, and compared the error before and after adjusting the position of patients due to difference in weight to evaluate the correlation between patients' weight and range of error. Computed tomography system(High Advantage, GE, USA) is used for phantom to maintain the supine position to acquire the images of the therapy site for IMRT. IMRT 4MV X-rays was used by applying the LINAC(21EX, Varian, U.S.A). Treatment planning system (Pinnacle, ver. 9.1h, Philips, Madison, USA) was used. The setup accuracy was compared with each measurement was repeated five times for each weight (0, 15, and 30Kg) and CBCT was performed 30 times to find the mean and standard deviation of errors before and after the adjustment of each weight. SPSS ver.19.0(SPSS Inc., Chicago, IL,USA) statistics program was used to perform the Wilcoxon Rank test for significance evaluation and the Spearman analysis was used as the tool to analyze the significance evaluation of the correlation of weight. As a result of measuring the error values from CBCT before and after adjusting the position due to the weight difference, X,Y,Z axis was $0.4{\pm}0.8mm$, $0.8{\pm}0.4mm$, 0 for 0Kg before the adjustment. In 15Kg CBCT before and after adjusting the position due to the weight difference, X,Y,Z axis was $0.2{\pm}0.8mm$, $1.2{\pm}0.4mm$, $2.0{\pm}0.4mm$. After adjusting position was X,Y,Z axis was $0.2{\pm}0.4mm$, $0.4{\pm}0.5mm$, $0.4{\pm}0.5mm$. In 30Kg CBCT before and after adjusting the position due to the weight difference, X,Y,Z axis was $0.8{\pm}0.4mm$, $2.4{\pm}0.5mm$, $4.4{\pm}0.8mm$. After adjusting position was X,Y,Z axis was $0.6{\pm}0.5mm$, $1.0{\pm}0mm$, $0.6{\pm}0.5mm$. When the holder for the head and neck cancer was used to adjust the ab.0ove error value, the error values from CBCT were $0.2{\pm}0.8mm$ for the X axis, $0.40{\pm}0.54mm$ for Y axis, and 0 for Z axis. As a result of statistically analyzing each value before and after the adjustment the value was significant with p<0.034 at the Z axis with 15Kg of weight and with p<0.038 and p<0.041 at the Y and Z axes respectively with 30Kg of weight. There was a significant difference with p<0.008 when the analysis was performed through Kruscal-Wallis in terms of the difference in the adjusted values of the three weight groups. As it could reduce the errors, patients' reproduction could be improved for more precise and accurate radiation therapy. Development of an adjustable device for head and neck cancer patients is significant because it improves the reproduction of existing equipment by reducing the errors in patients' position.

Radiotherapy for Nasopharyngeal Carcinoma (비인강암의 방사선치료 성적)

  • Lee, Myung-Za;Chun, Ha-Chung
    • Radiation Oncology Journal
    • /
    • v.21 no.4
    • /
    • pp.269-275
    • /
    • 2003
  • Purpose: To evaluate the results of radiation management on recurrence, survival and prognostic factors of patients with nasopharyngeal cancer Materials and Methods: Forty-nine patients, treated for nasopharyngeal cancer by radiotherapy between January 1984 and June 2000, were retrospectively studied. All patients were followed up for at least 2.5 years. Their median age was 52 years (range 17$\~$78). The histological types were 21 squamous cell carcinoma, 25 undifferentiated carcinoma, and 3 adenoid cystic carcinoma. The tumor stages were as follows: T1 in 14 patients, T2 in 24, T3 in 3, and T4 in 8, and N0 in 17 patients, Nl in 15, N2 in 4 and N3 in 13. Stages I, IIa, IIb ,III, IV and IVb were 4, 7, 12, 5, 8, and 13 patients respectively. Radiation doses of 58$\~$70 Gy (median 68.7 Gy) were given to the nasopahryngeal and involved lymphatic areas and of 46 $\~$ 50 Gy to the uninvolved neck areas. Results: The overall 5 and 10-year actuarial and disease free survival rates were 54.53$\%$ and 47$\%$ and 55.7$\%$ and 45.3$\%$, respectively The overall five-year survival rates were 100$\%$ in stage I , 80$\%$ in stage IIa, 59.5$\%$ in stage IIIb, 40$\%$ in stage III, and 42.2$\%$ in stage IV tumors. Twenty-three patients fatted either loco-regionally or distantly. Incidences of local failure, regional failure and distant metastasis for the first failure were 20.4$\%$, 8.2$\%$ and 20.4$\%$, respectively. Local recurrences were 4.3$\%$ in T1, 12.5$\%$ in T2, 0$\%$ in T3, and 62.5$\%$ in T4 lesions. Distant metastasis was seen in 41.2$\%$ of N2-3 lesions. Fifty percent of local recurrence appeared within 2 years of treatment at the primary lesion, whereas 70$\%$ of distant metastasis appeared within 2 years following treatment. Young age, female, early T stage, N0 stage; and poorly differentiated carcinoma were all related with good survival. However only stage showed statistically significance. Conclusionn: Based on the results of this study, radiation therapy to nasopharyngeal cancer showed high local recurrence in T4 and increased metastasis in N2-3 lesions. To improve local failure, further radiation doses, such as stereotactic radiation or IMRT radiation, are necessary especially in T4 lesions. The high incidence of distant metastasis in positive lymph node patients, indicates that combined radiation and effective chemotherapeutic agents with appropriated schedule are necessary.

Study on the beam properties of small field sizes (소조사면 전량분포의 특성에 관한 고찰)

  • Cho JeongHee;Lee SangKyu;An SeungKwon;Park Jell
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • Purpose : The aim of this study is to investigate the properties of small field size and to measure the penumbra and central axis depth dose varying to the jaw setting and off axis distance for indicate this data to small field sizes radiation therapy. Material and methods : The percentage depth dose, beam profile and central axis output dose was measured by farmer type ion chamber and pinpoint chamber using Primart linac with 6MV energy. Beam quality and penumbra variations according to the central axis shift, from center to every 2cm outside increment, and field size, from $1{\times}1cm$ to $10{\times}10cm$ was investigated and compared with that of the standard geometrical condition's results Results : The differences of measured values between two ion chamber was about $37\%$ at 10cm depth with $1{\times}1cm$ field sizes but as field size increased this differences was diminished gradually. Measured data from various off axis distance with the different asymmetric collimations are not changed significantly but as size decreased the dose variation was increased and at $1{\times}1cm$ field size dose difference among off axis distance was as much as $13\%$, and as shallower the measured depth the central axis dose variations among the OAD was increased, penumbra was not changed noticeably depending on off axis distance but the percentage of penumbra from its initial field sizes was strongly dependant on field sizes and penumbra occupation rates of its own field sizes ranging from $6\%$ at $10{\times}10cm$ to $50\%$ at $1{\times}1cm$ field size. Conclusion : For imrt treatment, there are several numbers of different gentry angles with beams of nonuniform fluences are required and several complex factors involved. Among them the characteristics of beam output varying to the geometrical setting and design of collimators are of important to attaining a good treatment results. As mentioned in results the differences of measured values are changed significantly depends on ion chamber volume, depths and field size. For providing quality radiation treatment, especially at small field size, those factor's should have considering deliberately.

  • PDF