• Title/Summary/Keyword: 세기계수

Search Result 288, Processing Time 0.036 seconds

Physical Environment Changes in the Keum River Estuary by the Dyke Gate Operation: II. Salinity Structure and Estuary Type (하구언 수문작동으로 인한 금강 하구역의 물리적 환경변화: II. 염분구조와 하구유형)

  • Lee, Sang-Ho;Kwon, Hyo-Keun;Choi, Hyun-Yong;Yang, Jae-Sam;Choi, Jin-Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.4
    • /
    • pp.255-265
    • /
    • 1999
  • CTD castings and current observations are taken in June, July and October, 1997 and May and July, 1998 to investigate the effect of the Keum River dyke on the structure of physical properties and the type of the Keum River estuary. Tide and tidal current relation shows that the ebbing is longer than the flooding by 1.5 hours with the early current reversing before high tide. In the rainy season (May to July), frequent large fresh water discharge during the ebbing from the dyke changes vertical salinity difference and time variation of salinity greatly near the head of the estuary, where salinity becomes lower than 2‰ in summer fresh water flooding. Halocline developed by the fresh water discharge makes two-layer structure, of which strength and depth increase in the low tide. The relationship between tide phase and surface salinity variation shows the phase lag of 2.5 hours near the head of the estuary but the standing wave relation down the estuary. This phase lag implies that a low salinity water diluted by the fresh water discharge for 2-3 hours in the ebb period moves with tidal excursion. In the dry season, vertical salinity difference reduces significantly. We calculate stratification and circulation parameters using the observed salinity structure, surface current and fresh water discharge. The Keum River estuary shows a partially mixed type, changing the stratification parameter from the rainy to the dry season. Mean flows of observed tidal current at lower and upper layer are landward and seaward, which are consistent with the circulation of a partially mixed estuary. Based upon the estuary type and circulation we suggest that the suspended materials will move toward the upstream due to low-layer mean flow and then the Keum River estuary will be a deposit environment.

  • PDF

Temporal and Spatial Variations of the Cold Waters Occurring in the Eastern Coast of the Korean Peninsula in Summer Season (하계 동해연안역에서 발생하는 냉수역의 시공간적 변동 특성)

  • SUH Young Sang;JANG Lee-Hyun;HWANG Jae Dong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.5
    • /
    • pp.435-444
    • /
    • 2001
  • Daily time series of longshore wind at 8 stations, sea surface temperature (SST) at 11 stations in the eastern coast of the Korean peninsula during $1983\~1997$ and the NOAA/AVHRR satellite data during $1990\~1998$ were used in order to study the temporal and spatial variations of the upwelling cold water which occurred in the summer season. The cold water occurred frequently in the eastern coastal waters of Korea such as Soimal, Kijang, Ulgi, Kampo, Pohang, Youngduk, Chukbyun, Chumunjin and Sokcho, During the upwelling cold water phenomenon, SST came down more than $-5^{\circ}C$ in a day. The maximum of the averaged RMS amplitude of daily SST was $5.8^{\circ}C$ along the eastern coast of Korea on Julian day 212 from $1983\~1997$. The cross correlation coefficients were higher than 0.5 between Sokcho and Chumunjin in the northern part of the East Sea, and along Soimal, Kijang, Ulgi, Kampo and Pohang in the southern part of the East Sea. In late July, 1995 the cold water occurred at Ulgi coastal area and extended to Ullung island which is located 250 km off the Ulgi coast. Even though the distance between Soimal and the Ulgi coast area is more than 120 km, the cross correlation coefficient related to the anomalies of SST due to upwelling cold water was the highest (0.7) in the southeastern coastal area of the Korean peninsula. This connection may be due to the cyclonic circulation of the Tsushima Current in this area and the topography of the ocean rather than the local south wind which induced the coastal upwelling.

  • PDF

Effect of Lead Content on Atomic Structures of Pb-bearing Sodium Silicate Glasses: A View from 29Si NMR Spectroscopy (납 함량에 따른 비정질 Pb-Na 규산염의 원자 구조에 대한 고상 핵자기 공명 분광분석 연구)

  • Lee, Seoyoung;Lee, Sung Keun
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.3
    • /
    • pp.157-167
    • /
    • 2021
  • Lead (Pb) is one of the key trace elements, exhibiting a peculiar partitioning behavior into silicate melts in contact with minerals. Partitioning behaviors of Pb between silicate mineral and melt have been known to depend on melt composition and thus, the atomic structures of corresponding silicate liquids. Despite the importance, detailed structural studies of Pb-bearing silicate melts are still lacking due to experimental difficulties. Here, we explored the effect of lead content on the atomic structures, particularly the evolution of silicate networks in Pb-bearing sodium metasilicate ([(PbO)x(Na2O)1-x]·SiO2) glasses as a model system for trace metal bearing natural silicate melts, using 29Si solid-state nuclear magnetic resonance (NMR) spectroscopy. As the PbO content increases, the 29Si peak widths increase, and the maximum peak positions shift from -76.2, -77.8, -80.3, -81.5, -84.6, to -87.7 ppm with increasing PbO contents of 0, 0.25, 0.5, 0.67, 0.86, and 1, respectively. The 29Si MAS NMR spectra for the glasses were simulated with Gaussian functions for Qn species (SiO4 tetrahedra with n BOs) for providing quantitative resolution. The simulation results reveal the evolution of each Qn species with varying PbO content. Na-endmember Na2SiO3 glass consists of predominant Q2 species together with equal proportions of Q1 and Q3. As Pb replaces Na, the fraction of Q2 species tends to decrease, while those for Q1 and Q3 species increase indicating an increase in disproportionation among Qn species. Simulation results on the 29Si NMR spectrum showed increases in structural disorder and chemical disorder as evidenced by an increase in disproportionation factor with an increase in average cation field strengths of the network modifying cations. Changes in the topological and configurational disorder of the model silicate melt by Pb imply an intrinsic origin of macroscopic properties such as element partitioning behavior.

Dosimetric Characteristics of Detectors in Measurement of Beam Data for Small Fields of Linear Accelerator (선형가속기의 소조사면에 대한 빔 자료 측정에서 검출기의 선량 특성 분석)

  • Koo, Ki-Lae;Yang, Oh-Nam;Lim, Cheong-Hwan;Choi, Won-Sik;Shin, Seong-Soo;Ahn, Woo-Sang
    • Journal of radiological science and technology
    • /
    • v.35 no.3
    • /
    • pp.265-273
    • /
    • 2012
  • Aquisition of accurate beam data is very important to calculate a reliable dose distribution of the treatment planning system for small radiation fields in intensity-modulated radiation therapy(IMRT) and stereotactic radiosurgery(SRS). For the measurement of small fields, the choice of a suitable detector is important due to the shape gradient in profile penumbra, the lack of lateral electronic equilibrium, and the effect of effective detector volume. Therefore, this study was to analyze the dosimetric characteristics of various detectors in measurement of beam data for small fields of linear accelerator. 0.01cc and 0.13cc ion chambers (CC01 and CC13) and a stereotactic diode detector(SFD) were used for measurement of small fields. The beam data, including the percent depth dose, output factor, and beam profile were acquired under 6 MV and 15 MV photon beams. Measurements were performed with the field size ranging from $2{\times}2cm^2$ to $5{\times}5cm^2$. For $2{\times}2cm^2$ field size, the differences of the ratios of $PDD_{20}$ and $PDD_{10}$ measured by CC01 and SFD detectors were 1.02% and 0.12% for 6 MV and 15 MV photon beams, respectively. For field sizes larger than $3{\times}3cm^2$, the differences of values of $PDD_{20}/PDD_{10}$ obtained from each detector were 1.15% and 0.71% for 6 MV and 15 MV photon beams, respectively. The output factors obtained from CC01 and SFD for $2{\times}2cm^2$ field size were within 0.5% and 1.5% for 6 MV and 15 MV, respectively. The differences in output factor of three detectors for $3{\times}3cm^2$ to $5{\times}5cm^2$ field sizes were within 0.5%. Profile penumbras measured by the SFD, CC01, and CC13 detectors at three depths were average 2.7 mm and 3.5 mm, 3.4 mm and 4.3 mm, and 5.2 mm and 6.1 mm for 6 MV and 15 MV photon beams, respectively. In conclusion, it could be possible to use of the CC01 and SFD detectors for the measurement of percent depth dose and output factor for $2{\times}2cm^2$ field size, and to use of three detectors for $3{\times}3cm^2$ to $5{\times}5cm^2$ field sizes. CC01 and SFD detectors, consider ably smaller than the radiation field, should be used in order to accurately measure the profile penumbra for small field sizes.

A Study on Property Change of Auto Body Color Design (자동차 바디컬러 디자인의 속성 변화에 관한 연구)

  • Cho, Kyung-Sil;Lee, Myung-Ki
    • Archives of design research
    • /
    • v.19 no.1 s.63
    • /
    • pp.253-262
    • /
    • 2006
  • Research of color has been developed and also has raised consumer desire through changing from a tool to pursue curiosity or beauty to a tool creating effects in the 20th century. People have been interested in colors as a dynamic expression of results since the color TV appeared. The meaning of colors has been recently diversified as the roles of colors became important to the emotional aspects of design. While auto colors have developed along with such changes of the times, black led the color trend during the first half of the 20th century from 1900 to 1950, a transitional period of economic growth and world war. Since then, automobile production has increased apace with the rapid economic growth throughout the world and automobiles became the most expensive item out of the goods that people use. Accordingly, increasing production induced facility investment in mass production and a technology leveling was achieved. Auto manufacturing processes are very complicated, auto makers gradually recognized that software changes such as to colors or materials was an easier way for the improvement of brand identity as opposed to hardware changes such as the mechanical or design components of the body. Color planning and development systems were segmented in various aspects. In the segmentation issue, pigment technology and painting methods are important elements that have an influence on body colors and have a higher technical correlation with colors than in other industries. In other words, the advanced mixture of pigments is creating new body colors that have not existed previously. This diversifies the painting structure and methods and so maximizes the transparency and depth of body colors. Thus, body colors that are closely related to technical factors will increase in the future and research on color preferences by region have been systemized to cope with global competition due to the expansion and change of auto export regions.

  • PDF

Development of Artificial Pulmonary Nodule for Evaluation of Motion on Diagnostic Imaging and Radiotherapy (움직임 기반 진단 및 치료 평가를 위한 인공폐결절 개발)

  • Woo, Sang-Keun;Park, Nohwon;Park, Seungwoo;Yu, Jung Woo;Han, Suchul;Lee, Seungjun;Kim, Kyeong Min;Kang, Joo Hyun;Ji, Young Hoon;Eom, Kidong
    • Progress in Medical Physics
    • /
    • v.24 no.1
    • /
    • pp.76-83
    • /
    • 2013
  • Previous studies about effect of respiratory motion on diagnostic imaging and radiation therapy have been performed by monitoring external motions but these can not reflect internal organ motion well. The aim of this study was to develope the artificial pulmonary nodule able to perform non-invasive implantation to dogs in the thorax and to evaluate applicability of the model to respiratory motion studies on PET image acquisition and radiation delivery by phantom studies. Artificial pulmonary nodule was developed on the basis of 8 Fr disposable gastric feeding tube. Four anesthetized dogs underwent implantation of the models via trachea and implanted locations of the models were confirmed by fluoroscopic images. Artificial pulmonary nodule models for PET injected $^{18}F$-FDG and mounted on the respiratory motion phantom. PET images of those acquired under static, 10-rpm- and 15-rpm-longitudinal round motion status. Artificial pulmonary nodule models for radiation delivery inserted glass dosemeter and mounted on the respiratory motion phantom. Radiation delivery was performed at 1 Gy under static, 10-rpm- and 15-rpm-longitudinal round motion status. Fluoroscpic images showed that all models implanted in the proximal caudal bronchiole and location of models changed as respiratory cycle. Artificial pulmonary nodule model showed motion artifact as respiratory motion on PET images. SNR of respiratory gated images was 7.21. which was decreased when compared with that of reference images 10.15. However, counts of respiratory images on profiles showed similar pattern with those of reference images when compared with those of static images, and it is assured that reconstruction of images using by respiratory gating improved image quality. Delivery dose to glass dosemeter inserted in the models were same under static and 10-rpm-longitudinal motion status with 0.91 Gy, but dose delivered under 15-rpm-longitudinal motion status was decreased with 0.90 Gy. Mild decrease of delivered radiation dose confirmed by electrometer. The model implanted in the proximal caudal bronchiole with high feasibility and reflected pulmonary internal motion on fluoroscopic images. Motion artifact could show on PET images and respiratory motion resulted in mild blurring during radiation delivery. So, the artificial pulmonary nodule model will be useful tools for study about evaluation of motion on diagnostic imaging and radiation therapy using laboratory animals.

Evaluation of Photoneutron Dose for Prostate Cancer Radiation Therapy by Using Optically Stimulated Luminescence Dosimeter (OSLD) (전립선암 방사선치료 시 광자극발광선량계를 이용한 광중성자선량 평가)

  • Lee, Joo-Ah;Back, Geum-Mun;Kim, Yeon-Soo;Son, Soon-Yong;Choi, Kwan-Woo;Yoo, Beong-Gyu;Jeong, Hoi-Woun;Jung, Jae-Hong;Kim, Ki-Won;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.37 no.2
    • /
    • pp.125-134
    • /
    • 2014
  • This study is to provide basic information regarding photoneutron doses in terms of radiation treatment techniques and the number of portals in intensity-modulated radiation therapy (IMRT) by measuring the photoneutron doses. Subjects of experiment were 10 patients who were diagnosed with prostate cancer and have received radiation treatment for 5 months from September 2013 to January 2014 in the department of radiation oncology in S hospital located in Seoul. Thus, radiation treatment plans were created for 3-Dimensional Conformal Radiotherapy (3D-CRT), Volumetric-Modulated Arc Radiotherapy (VMAT), IMRT 5, 7, and 9 portals. The average difference of photoneutron dose was compared through descriptive statistics and variance analysis, and analyzed influence factors through correlation analysis and regression analysis. In summarized results, 3D-CRT showed the lowest average photoneutron dose, while IMRT caused the highest dose with statistically significance (p <.01). The photoneutron dose by number of portals of IMRT was $4.37{\pm}1.08mSv$ in average and statistically showed very significant difference among the number of portals (p <.01). Number of portals and photoneutron dose are shown that the correlation coefficient is 0.570, highly statistically significant positive correlation (p <.01). As a result of the linear regression analysis of number of portals and photoneutron dose, it showed that photoneutron dose significantly increased by 0.373 times in average as the number of portals increased by 1 stage. In conclusion, this study can be expected to be used as a quantitative basic data to select an appropriate IMRT plans regarding photoneutron dose in radiation treatment for prostate cancer.

Comparative evaluation of dose according to changes in rectal gas volume during radiation therapy for cervical cancer : Phantom Study (자궁경부암 방사선치료 시 직장가스 용적 변화에 따른 선량 비교 평가 - Phantom Study)

  • Choi, So Young;Kim, Tae Won;Kim, Min Su;Song, Heung Kwon;Yoon, In Ha;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.89-97
    • /
    • 2021
  • Purpose: The purpose of this study is to compare and evaluate the dose change according to the gas volume variations in the rectum, which was not included in the treatment plan during radiation therapy for cervical cancer. Materials and methods: Static Intensity Modulated Radiation Therapy (S-IMRT) using a 9-field and Volumetric Modulated Arc Therapy (VMAT) using 2 full-arcs were established with treatment planning system on Computed Tomography images of a human phantom. Random gas parameters were included in the Planning Target Volume(PTV) with a maximum change of 2.0 cm in increments of 0.5 cm. Then, the Conformity Index (CI), Homogeneity Index (HI) and PTV Dmax for the target volume were calculated, and the minimum dose (Dmin), mean dose (Dmean) and Maximum Dose (Dmax) were calculated and compared for OAR(organs at risk). For statistical analysis, T-test was performed to obtain a p-value, where the significance level was set to 0.05. Result: The HI coefficients of determination(R2) of S-IMRT and VMAT were 0.9423 and 0.8223, respectively, indicating a relatively clear correlation, and PTV Dmax was found to increase up to 2.8% as the volume of a given gas parameter increased. In case of OAR evaluation, the dose in the bladder did not change with gas volume while a significant dose difference of more than Dmean 700 cGy was confirmed in rectum using both treatment plans at gas volumes of 1.0 cm or more. In all values except for Dmean of bladder, p-value was less than 0.05, confirming a statistically significant difference. Conclusion: In the case of gas generation not considered in the reference treatment plan, as the amount of gas increased, the dose difference at PTV and the dose delivered to the rectum increased. Therefore, during radiation therapy, it is necessary to make efforts to minimize the dose transmission error caused by a large amount of gas volumes in the rectum. Further studies will be necessary to evaluate dose transmission by not only varying the gas volume but also where the gas was located in the treatment field.

Satellite-altimeter-derived East Sea Surface Currents: Estimation, Description and Variability Pattern (인공위성 고도계 자료로 추정한 동해 표층해류와 공간분포 변동성)

  • Choi, Byoung-Ju;Byun, Do-Seong;Lee, Kang-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.4
    • /
    • pp.225-242
    • /
    • 2012
  • This is the first attempt to produce simultaneous surface current field from satellite altimeter data for the entire East Sea and to provide surface current information to users with formal description. It is possible to estimate surface geostrophic current field in near real-time because satellite altimeters and coastal tide gauges supply sea level data for the whole East Sea. Strength and location of the major currents and meso-scale eddies can be identified from the estimated surface geostrophic current field. The mean locations of major surface currents were explicated relative to topographic, ocean-surface and undersea features with schematic representation of surface circulation. In order to demonstrate the practical use of this surface current information, exemplary descriptions of annual, seasonal and monthly mean surface geostrophic current distributions were presented. In order to objectively classify surface circulation patterns in the East Sea, empirical orthogonal function (EOF) analysis was performed on the estimated 16-year (1993-2008) surface current data. The first mode was associated with intensification or weakening of the East Korea Warm Current (EKWC) flowing northward along the east coast of Korea and of the anti-cyclonic circulation southwest of Yamato Basin. The second mode was associated with meandering paths of the EKWC in the southern East Sea with wavelength of 300 km. The first and second modes had inter-annual variations. The East Sea surface circulation was classified as inertial boundary current pattern, Tsushima Warm Current pattern, meandering pattern, and Offshore Branch pattern by the time coefficient of the first two EOF modes.

A Numerical Study on the Interaction of Ulleung Warm Eddy with Topography and Lateral Boundary (울릉 난수성 Eddy와 해저지형과의 상호작용에 관한 수치모델 연구)

  • Lim, Keun-Sik;Kim, Kuh
    • 한국해양학회지
    • /
    • v.30 no.6
    • /
    • pp.565-583
    • /
    • 1995
  • We have used a nonlinear quasi-geostrophic model to study effects of lateral friction and bottom topography on the motion of warm eddies. The two empirical orthogonal functions of the stream function, accounting for the vertical structure, represent the barotropic and first baroclinic dynamic modes. This model is integrated 360 days on a 1000 km ${\times}$ 1000 km domain with a resolution of 10 km ${\times}$ 10 km including both the thermocline and idealized topography of the East Sea. Prescribed inflow through the Korea Strait is compensated by outflow through the Tsugaru Strait. The balance between the nonlinear advection term and the planetary ${\beta}$-effect tends to make northward movement of warm eddy over a flat bottom. The motion of a warm eddy over a sloping topography can be dominated by the nonlinear advection, while nonlinearity plays a secondary role over a flat topography. For eddies dispersing over topography, the nonlinear tendency is a function of time. For a strong warm eddy, northward propagation can occur. For intermediate strength of eddies one might expect a balance between the nonlinear term and the topographic ${\beta}$-effect. As nonlinearity decreases with eddy dispersion, southward motion along the slope may occur by such as a topographic Rossby wave. Our numerical simulations have confirmed the importance of lateral friction on eddy motions, in such a way that the northward penetration of the warm eddy increases drastically by the decrease of the lateral friction. The northward motion of warm eddy can be prevented by reducing the Reynolds number sufficiently. We have also demonstrated the crucial role of topographic effects in the eddy motion process.

  • PDF