• Title/Summary/Keyword: 세균 불활성화

Search Result 30, Processing Time 0.025 seconds

정수지 소독능 진단에 관한 고찰

  • 박승철;이창수
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2004.11a
    • /
    • pp.205-206
    • /
    • 2004
  • 국내 정수처리에 있어 기존 장티프스, 콜레라 등과 같은 병원성 세균의 소독 뿐만아니라 최근에는 지아디아, 크립토스포리디움과 같은 병원성 원생동물의 불활성화에 대하여 많은 관심을 가져야 하며 적정한 소독능을 확보하기 위해서는 정수지의 도류벽 설치, 용량확장, 수위비조절 및 잔류염소 농도 조절 등의 운영 및 시설개선이 필요한 것으로 판단된다.

  • PDF

The Inactivation and Microbial Regrowth Inhibition of Heterotrophic and Nitrifying Bacteria by Chloramination (클로라민 소독에 의한 종속영양세균과 질산화세균의 불활성화 및 재성장 억제)

  • 조관형;김평청;우달식;조영태
    • Journal of Environmental Science International
    • /
    • v.10 no.3
    • /
    • pp.247-252
    • /
    • 2001
  • This study was performed to evaluate the inactivation and microbial regrowth of heterotrophic and nitrifying bacteria using chloramine as a secondary disinfectant for drinding water distribution system. Three sets of the three reactors filled with the $Cl_2/NH_3-N$ ratio of 3:1, 4:1, and 5:1 were used in these experiments. Chloramine concentration were applied to each set of the reactors with $1mg/\ell$,\;2mg/\ell\;and\;3mg/\ell$, respectively. For the set with elapsed time and reached to zero level after 7 days. Heterotrophic bacteria remarkably increased and nitrification through the experimenatal period (21 day). Furthermore the regrowth of heterotrophic bacteria and nitrification were not found. More than $2mg/\ell$ of chloramine with $Cl_2/NH_3-N$ ratio of 3:1, the nitrification could be inhibited by 2 days of contact time.

  • PDF

Inactivation of Foodborne Pathogens by Lactic Acid Bacteria

  • Daliri, Frank;Aboagye, Agnes Achiaa;Daliri, Eric Banan-Mwine
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.5
    • /
    • pp.419-429
    • /
    • 2020
  • The problems caused by foodborne pathogens are not only a concern to the food industry but also with regard to global public health. Over the years, fermentation technology has proved to be one of the cheapest and safest methods for inactivating and controlling pathogenic microorganisms in food. Scientific evidence shows that lactic acid bacteria fermentation exerts significant antimicrobial effect against pathogenic bacteria and viruses. Lactic acid bacteria metabolites such as organic acids, bacteriocins and hydrogen peroxides have adverse effects on foodborne pathogens which lead to their inhibition. These compounds do not only cause physical injuries, but also have significant effects on the pathogens' gene expression. Furthermore, the presence of lactic acid bacteria in food provides nutritional competition among foodborne pathogens, and all these factors together suppress their growth. This study reviews our current knowledge of the antimicrobial abilities of lactic acid bacteria, their molecular mechanisms, and their application for inactivating foodborne pathogens.

Comparison of inactivation and sensitivity of antibiotic resistance bacteria by ultrasound irradiation (초음파 조사에 의한 항생제 내성균 불활성화 및 감수성 변화)

  • Lee, Sunghoon;Nam, Seong-Nam;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.3
    • /
    • pp.191-204
    • /
    • 2019
  • The 20-kHz ultrasonic irradiation was applied to investigate bacterial inactivation and antibiotic susceptibility changes over time. Applied intensities of ultrasound power were varied at 27.7 W and 39.1 W by changing the amplitude 20 to 40 to three bacteria species (Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus). By 15-min irradiation, E. coli, a gram-negative bacterium, showed 1.2- to 1.6-log removals, while the gram-positive bacteria, Enterococcus faecalis and Staphylococcus aureus, showed below 0.5-log removal efficiencies. Antibiotic susceptibility of penicillin-family showed a dramatic increase at E. coli, but for other antibiotic families showed no significant changes in susceptibility. Gram-positive bacteria showed no significant differences in their antibiotic susceptibilities after ultrasound irradiation. Bacterial re-survival and antibiotic susceptibility changes were measured by incubating the ultrasound-irradiated samples. After 24-hour incubation, it was found that all of three bacteria were repropagated to the 2- to 3-log greater than the initial points, and antibiotic inhibition zones were reduced compared to ones of the initial points, meaning that antibiotic resistances were also recovered. Pearson correlations between bacterial inactivation and antibiotic susceptibility showed negative relation for gram-negative bacteria, E. coli., and no significant relations between bacterial re-survival and its inhibition zone. As a preliminary study, further researches are necessary to find practical and effective conditions to achieve bacteria inactivation.

Gamma-Radiation Sensitivity of Pathogenic Bacteria in Beef (우육에 오염시킨 병원세균의 방사선 감수성)

  • Yook, Hong-Sun;Kim, Sung;Lee, Kyong-Haeng;Kim, Yeong-Ji;Kim, Kyoung-Pyo;Byun, Myung-Woo
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.1432-1438
    • /
    • 1998
  • The gamma-radiation sensitivity of eight kinds of pathogenic bacteria related to beef was investigated in frozen cells $(-18^{\circ}C)$ with 0.1 M phosphate buffer and inoculated cells in beef. In frozen cells, D10 values of pathogenic bacteria related to beef were $0.07{\sim}0.69$ kGy, and inactivation factors were $2.90{\sim}42.86$ at the radiation doses of $2{\sim}3$ kGy. Beef was inoculated with Escherichia coli, Pseudomonas aeruginosa, Salmonella typhimurium, Enterobacter aerogenes, Vibrio parahaemolyticus, Staphylococcus aureus, Listeria monocytogenes, and Aeromonas hydrophila. Inoculated beef samples were packaged in air and irradiated at 0.005 to 3.0 kGy. Ninety percent of the viable pathogenic bacteria in beef was eliminated by doses of $0.1{\sim}0.61$ kGy at room temperature, and the inactivation factors were $3.28{\sim}30.0$ kGy at the radiation doses of $2{\sim}3$ kGy. Therefore, irradiation is considered to be an effective method to control pathogenic bacteria in beef.

  • PDF

Inactivation of Spore-Forming Bacteria by Gamma Irradiation (감마선 조사에 의한 유포자 세균의 불활성화)

  • 변명우;권오진;육홍선
    • Journal of Food Hygiene and Safety
    • /
    • v.11 no.3
    • /
    • pp.197-201
    • /
    • 1996
  • D10 values obtained for radiation alone in Bacillus subtilis and Clostridium perfrigenes were 0.35-0.48 kGy in vegetative cells, and 2~2.08 kGy in spores, respectively. Irradiation dose of 24 kGy completely inhibited spores. In the case of heat treatment, D50, 60 values ranged from 10 to 14 minutes in vegetative cells, and D70, 80, 90 values ranged from 10 to 140 minutes in spores. In the case of combined treatment with heat and radiation, D10 values ranged form 1 to 1.25 kGy in vegetative cells, and from 3.42 to 3.61 kGy in spores. Thus, resistance of cells to gamma radiation did not seem to be influences by pre-heating.

  • PDF

Rifampicin과 Ofloxacin에 내성인 정장용 세균의 개발

  • 최응칠;정영자;김숙경;김병각
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.252-252
    • /
    • 1994
  • 현재 시판되고 있는 정장용 생균 제제에 함유되어있는 정장균주의 하나인 Bifidohacterium bifidum은 항결핵제 중 rifampicin에 감수성으로 rifimpicin과 병용 투여시 본래의 정장 효과를 기대할 수 없다. 따라서, rifampicin에 내성인 돌연변이 균주를 얻기 위해 B. bifidum을 N-methyl-N'-nitro-N-nitroso- -guanidine(MNNG)로 처리하여 rifampicin에 내성인 30종의 균주를 선별 하였고, rifampicin에 대한 Minimal Inhibitory Concentration(MIC)를 측정해 본 결과 내성이 1,000배 이상 상승하였다. 또한 rifampicin에 내성인 균주 RFR61을 자연 돌연변이시켜 ofloxacin에도 내성인 돌연변이 균주 20종을 선별 하였고, MIC를 측정한 결과 내성이 4배 이상 증가하였다. 또, fructose-6-phosphate phosphoketolase test를 실시해 본 결과, 모두 Bifidobacterium임이 확인되었다. 유기산 생성량을 측정하여 모균주의 유기산 생성량과 가장 유사한 3균주, B. bifidum RFRll, RFR21, RFR61 그리고 OFR9을 선별하였다. 이 네 균주의 E. coli 생육 억제능을 측정한 결과 모두 모균주와 유사한 E. coli 생육 억제능을 가지고 있었다. Rifampicin 내성균주들에 대하여 내성 유지 시험을 한 결과 복귀 돌연변이에 의해 내성이 소실될 가능성은 없는 것으로 여겨진다. 마지막으로, 내성 균주에 의한 rifampicin 불활성화 여부를 알아 본 결과 rifampicin이 불활성 화되지 않음을 알 수 있었다. 이상의 결과를 통해 본 연구실에서 개발한 B. bifidum RFR11, RFR21 그리고 RFR61 균주들은 rifampicin에 내성이며, B.bifidum OFR9은 rifampicin과 ofloxacin에 이중 내성을 갖는 균주로서 모균주와 유사한 생화학적 특성을 갖는 우수한 정장 세균으로 여겨진다.

  • PDF

Disinfection Effect of Film Cassettes by Ultraviolet Irradiation (자외선을 이용한 Film Cassette의 소독 효과)

  • Kweon, Dae-Cheol;Park, Peom
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.4
    • /
    • pp.425-432
    • /
    • 2001
  • A bacteria infection on film cassette contact surface was examined at the diagnostic radiology department. Studies have demonstrated a bactericidal effect of ultraviolet irradiation, and to assess the contamination level on film cassette contact surface as a predictor of patient prevent from nosocomial infection. The study showed that the laboratory result was identified non-pathologic and pathologic bacterial in the five different cassette size of the contact surface. Film cassettes were exposed to ultraviolet light for 1, 2 and 3 minutes. Ultraviolet light disinfection practices suitable for bacteria. The study concludes that presence of a bacterial infection will prevent a using antiseptic technique on film cassette contact surface. In conclusion, ultraviolet irradiate on film cassette over the surface more than 2 minutes. Ultraviolet dose of $1565 {\mu}W{\codt}s/cm^2$ Win in 30 second relative to ultraviolet dose in time.

  • PDF

Inactivation of Pathogenic Bacteria by Addition of Thermophilic Bacteria in the Thermophilic Aerobic Oxidation(TAO) System (고온호기산화장치의 고온미생물 첨가에 의한 병원성 미생물의 불활성화)

  • Lee W. I.;H. Tsujii;T. Maki;Lee M. G.
    • Journal of Animal Environmental Science
    • /
    • v.10 no.2
    • /
    • pp.111-118
    • /
    • 2004
  • This study analyzed temperature increase, microorganism changes, and inactivation of pathogenic microorganisms in pig slurry when treated with thermophilic microorganisms in Thermophilic Aerobic Oxidation(TAO) system. An amount of $6 m^3$ of pig slurry was treated in an $18 m^3(3.0\times2.5\times2.4 m)$ reactor for 5 to 7 days in two groups: the control of pig slurry only and the treatment of pig slurry with 6 liters of thermophilic microorganism(Bacillus sp.). To study the microorganism changes in the reactor, the populations of aerobic mesophilic microorganisms, thermophilic microorganisms and general pathogens were analyzed. To study the inactivation of pathogenic microorganisms, the levels of E. coli, Salmonella sp, Crytosporidium parvum and Giardia lamblia were analyzed. The temperature inside the reactor ranged from 18 to $62^{\circ}C$ for the control while far the treatment group it ranged from 18 to $66^{\circ}C$, showing a slightly higher array. With regard to changes in microorganisms, both mesophilic and thermophilic organisms decreased from $3.1\times10^6$ to $1.2\times10^2$ CFU/ml and from $1.0\times10^4$ to $8.0\times10^1$ CFU/ml, respectively, in the control. In the treatment, on the other hand, mesophilic organisms decreased from $3.0\times10^8$ CFU/ml to $8.6\times10^5$ CFU/ml while thermophilic organisms increased sharply from $2.0\times10^6$ to $1.2\times10^8$ CFU/ml. For pathogens, Salmonella and Giardia were not detected either before or after the treatment, while E. coli and C. parvum were found to be $10^5$ CFU/ml each before treatment and negative after it. From this experiment, it was concluded that thermophilic microorganisms could effectively sanitize liquid compost by generating high temperature in the TAO system, which in turn would inhibit the growth of pathogenic organisms.

  • PDF

Disinfection Efficiency of Medium Pressure UV Lamp on Major Bacteria in Sand Filtered Water (사여과수에 존재하는 우점세균의 중압 자외선 램프 소독능)

  • Ahn, Seoung-Koo;Yang, Yoon-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.12
    • /
    • pp.1141-1146
    • /
    • 2010
  • Isolated the heterotrophic aerobic bacteria in sandfiltered water on NA and TSBA solid medium, selected 8 dominant species and identified by Sherlock System. Each samples are irradiated 0, 5, 16, 40 and $60\;mJ/cm^2$ using on CBD (Collimated Beam Device) Medium Pressure UV lamp after these identified bacterium did liquid culture how to make $10^6{\sim}10^7\;cells/mL$ suspended in dilution water. Then cultured bacteria are estimated inactivation rate on plate media. Identified Gram positive group are Bacillus Subtilus, Bacillus megaterium, Rhodococcus erythropolis and Microbacterium laevaniformans; Gram negative group are Pseudomonas vesicularis, Pseudomonas pseudoflava, Alcaligenes paradoxus and Zooglea ramigera. These isolation of bacterium are more stronger reference strain and high resistance of MP UV irradiation, Besides Gram negative bacterium are more sensitive Gram positive bacterium on MP UV dose. Now we are estimating to $60{\sim}100\;mJ/cm^2$ MP UV dose for efficient disinfection in water treatment plant.