• Title/Summary/Keyword: 성형 해석

Search Result 1,435, Processing Time 0.024 seconds

Design of Conformal Cooling Channels for the Mould of a Plastic Drawer of a Refrigerator by Analysis of Three-Dimensional Injection Moulding (3 차원 사출성형 해석을 통한 냉장고 플라스틱 서랍 제작용 사출 성형 금형의 형상적응형 냉각수로 설계)

  • Ahn, Dong-Gyu;Park, Min-Woo;Park, Seung-Hwa;Kim, Hyung-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1487-1492
    • /
    • 2010
  • The objective of this study is to design the conformal cooling channels for the mould of a plastic drawer of a refrigerator by analysis of three-dimensional injection molding. In order to obtain the desired design of the conformal cooling channels, the influence of the diameter and the position of the conformal cooling channels on the moulding characteristics and the product qualities were quantitatively examined. From the results of the examination, an optimal design of the conformal cooling channels, which ensures uniform cooling and minimum potential deformation of the molded drawers, was estimated. By comparing the designed mould and a conventional mould with linear cooling channels from the viewpoints of the product qualities as well as cooling and cycle times, it was shown that the mould with conformal cooling channels can simultaneously improve the productivity of the injection moulding process and the product qualities.

Rigid-Plastic Finite Element Analysis of Sheet Metal Forming with Three Dimensional Dies Considering Contack (접촉을 고려한 3차원 형상의 금형에 의한 박판성형의 강소성 유한요소해석)

  • 양동열;정완진;김용환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.6
    • /
    • pp.1092-1103
    • /
    • 1989
  • 본 논문에서는 기존의 금속성형의 유한요소해석에서 사용한 바 있는 기하적경 계조건을 직접 유한요소방정식에 대입하는 방법들을 비교검토하고 3차원박판성형에 적용하기 위하여 개선된 방법을 개발하였다.

Comparison of Forming force on forward and Backward Flow Forming for Combustion Chamber (연소기를 위한 전후방 유동성형에서의 성형력 비교)

  • Nam, Kyoun-Go;Cho, Cheon-Hwey;Hong, Sung-In
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.34-39
    • /
    • 2006
  • The flow forming has been used to produce long thin walled tube parts, with reduced forming force and enhanced mechanical for a good finished part, compared with other method formed parts. Especially, the flow forming is suitable for making high precision thin walled cylinders, such as rocket motor cases, combustion chamber, hydraulic cylinders and high-pressure vessels and so on. In this paper, finite element analysis of three-roller forward and backward flow forming for combustion chamber is carried out to study effects of forming depth and feed rate on forming force. The axial and radial forming forces of forward flow forming on several forming depth and feed rate conditions are compared with those of backward flow forming.

Optimization of Injection Mold Fluidic System for the Square-type Cosmetic Case by Injection Molding Analysis Method (사출성형해석을 통한 화장품 사각 외장케이스 금형 유동시스템 구조 최적화)

  • Yoon, Gil-Sang;Kim, Gun-Hee;Lee, Jeong-Won;Sohn, Jong-In;Seo, Tae-Il;Kim, Yoo-Jin;Lee, Jung-Bae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12b
    • /
    • pp.514-517
    • /
    • 2011
  • 본 연구에서는 사각형태 화장품 케이스 사출성형 시 발생되었던 수지 미성형 불량을 해결하기 위하여 사출성형해석 기술을 통해 성형품 형상변경 및 사출금형 내 유동 시스템 수정방안 도출을 수행하였다. 대상제품인 사각형태 화장품 케이스는 상측부 케이스로서 케이스 외관에 게이트 및 취출흔적이 남지 않아야 함에 따라 측면부 게이트 적용으로 유동거리가 길어져 미성형 불량이 다수 발생하는 제품이다. 따라서, 수지 유동성 향상과 더불어 효율적인 보압전달을 통하여 수지 충전 및 변형발생 저감을 위하여 성형품 형상변화 및 유동시스템 변화에 따른 사출성형해석을 수행하고 결과를 고찰하였다. 이로써 최종적으로 수지 미충전으로 인한 미성형 불량을 제거하고 성형품 변형을 줄일 수 있는 수지유동시스템 수정방안을 제시하였다.

  • PDF

A Theoretical and Experimental Study on Forming Limits in the Flanging Processes (플랜징 공정 의 성형한계 에 대한 이론 및 실험적 연구)

  • 양동열;박승교
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.6
    • /
    • pp.777-787
    • /
    • 1985
  • The study is concerned with the analysis of flanging as a sheet metal working process. In terms of mechanics, the flanging process can be divided into two groups, i.e, shrink flanging and stretch flanging. In this study, the shrink flanging process is analyzed by using the proposed energy criterion and the forming limit is found for the process. The forming limit for stretch flanging is also found by employing the neckind theory. Experiments are carried out for both processes. Approximate forming limits are obtained from the experiments. An approximate method to calculate the punch force is proposed and the computed results are compared with the experimental results. It is shown that there are good agreements in forming limits and punch forces between theory and experiments.

Investigation of Cooling Performance of Injection Molds Using Pulsed Mold Temperature Control (가변 금형온도 제어기법을 적용한 사출금형의 냉각성능 고찰)

  • Sohn, Dong Hwi;Park, Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.1
    • /
    • pp.35-41
    • /
    • 2013
  • In injection molding, the mold temperature is one of most important process parameters that affect the flow characteristics and part deformation. The mold temperature usually varies periodically owing to the effects of the hot polymer melt and the cold coolant as the molding cycle repeats. In this study, a pulsed mold temperature control was proposed to improve the part quality as well as the productivity by alternatively circulating hot water and cold water before and after the molding stage, respectively. Transient thermal-fluid coupled analyses were performed to investigate the heat transfer characteristics of the proposed pulsed mold heating and cooling system. The simulation results were then compared with those of the conventional mold cooling system in terms of the heating and cooling efficiencies of the proposed pulsed mold temperature control system.

Evaluation of Compression Molding Simulation with Compression Properties of Carbon Fiber Prepreg (탄소 섬유 프리프레그의 압축 물성을 고려한 복합재 고온 압축 성형 해석 평가)

  • Bae, Daeryeong;Lee, Jung Wan;Yi, Jin-Woo;Um, Moon-Kwang
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.421-428
    • /
    • 2018
  • In order to optimize the prepreg compression molding (PCM) process, the forming simulation is required to cope with any problems that may be raised during the process. For the improvement of simulation accuracy, the input data of material property should be measured accurately. However, most studies assume that the compressive properties of the prepreg are identical to the tensile properties without quantifying them separately. Therefore, in this study, the in - plane compressive properties of the prepreg are presented to improve the accuracy of the forming simulation. As a result, the compressive modulus of the fibers was measured to be about $10^{-2}$ times lower than the tensile modulus. Also we designed a square-cup mold with a tilting angle of $110^{\circ}$ to simulate the prepreg formability during the high temperature compression mold process. Shear angles were measured at each corner, which were compared with the simulation results. It was observed that the simulation results using the accurate compressive properties of the prepreg showed a similar trend with the experimental results. It was confirmed that the measured data of the in-plane compression property improved the accuracy of the forming simulation results.

Study of Hot Spinning Process for Head of CNG Storage Vessel (CNG 저장용기의 두부 성형을 위한 열간스피닝 공정에 관한 연구)

  • Lee, Hyun Woo;Jung, Sung Yuen;Kim, Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.547-554
    • /
    • 2013
  • The fuel storage vessel installed in CNG vehicles can be largely divided into 3 parts: head, cylinder, and dome. Studies of the cylinder and dome parts have already been performed, but sufficient design data is not available about the head part. Therefore, expert field engineers heavily depend upon trial-and-error methods. Therefore, FE analysis is performed to review the hot spinning process for forming the head part of the CNG vessel using the Arbitrary Lagrangian-Eulerian (ALE) method. The effects of forming factors on the load were analyzed. The values of the factors were chosen to avoid defects in the head part and buckling, and the forming feasibility of the head part was investigated. Furthermore, a bursting test was performed to evaluate the safety of the storage vessel.

Prediction of Mechanical Property of Glass Fiber Reinforced Polycarbonate and Evaluation of Warpage through Injection Molding (유리섬유로 강화된 폴리카보네이트의 기계적 물성예측 및 사출성형을 통한 휨의 평가)

  • Moon, Da Mi;Choi, Tae Gyun;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.708-713
    • /
    • 2014
  • Most plastics products are being produced by injection molding process. However, mold shrinkage is inevitable in injection molding process and it deteriorates dimensional quality through deflections and warpages. Mold shrinkage depends upon the material property of resin as well as injection molding condition. In this study, material property of resin has been predicted for glass fiber reinforced polycarbonate to control the warpage, and computer simulation of injection molding has been performed using predicted property. It was observed that the deflection of part decreased by the glass fiber reinforced resin. In order to verify the validity of this method and confidence of results, experiments of injection molding were performed. The results of experiments and computer simulations showed good agreement in their tendency of deflections. Consequently, it was concluded that the method of designing the material property of resin conducted in this study can be utilized to control the dimensional accuracy of injection molded products.