• Title/Summary/Keyword: 성형 시스템

Search Result 539, Processing Time 0.029 seconds

Fabrication of 3D PCL/PLGA/TCP Bio-scaffold using Multi-head Deposition System and Design of Experiment (다축 적층 시스템과 실험 계획법을 이용한 3차원 PCL/PLGA/ICP 바이오 인 공지지체 제작)

  • Kim, Jong-Young;Yoon, Jun-Jin;Park, Eui-Kyun;Kim, Shin-Yoon;Cho, Dong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.146-154
    • /
    • 2009
  • In recent tissue engineering field, it is being reported that the fabrication of 3D scaffolds having high porous and controlled internal/external architectures can give potential contributions in cell adhesion, proliferation and differentiation. To fabricate these scaffolds, various solid free-form fabrication technologies are being applied. The solid free-form fabrication technology has made it possible to fabricate solid free-form 3D microstructures in layer-by-layer manner. In this research, we developed a multi-head deposition system (MHDS) and used design of experiment (DOE) to fabricate 3D scaffold having an optimized internal/external shape, Through the organization of experimental approach using DOE, the fabrication process of scaffold, which is composed of blended poly-caprolactone (PCL), poly-lactic-co-glycolic acid (PLGA) and tricalcium phosphate (TCP), is established to get uniform line width, line height and porosity efficiently Moreover, the feasibility of application to the tissue engineering of MHDS is demonstrated by human bone marrow stromal cells (hBMSCs) proliferation test.

An Integrated Maintenance in Injection Molding Processes (사출성형 공정에서의 통합정비방법에 관한 연구)

  • Park, Chulsoon;Moon, Dug Hee;Sung, Hongsuk;Song, Junyeop;Jung, Jongyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.3
    • /
    • pp.100-107
    • /
    • 2015
  • Recently as the manufacturers want competitiveness in dynamically changing environment, they are trying a lot of efforts to be efficient with their production systems, which may be achieved by diminishing unplanned operation stops. The operation stops and maintenance cost are known to be significantly decreased by adopting proper maintenance strategy. Therefore, the manufacturers were more getting interested in scheduling of exact maintenance scheduling to keep smooth operation and prevent unexpected stops. In this paper, we proposedan integrated maintenance approach in injection molding manufacturing line. It consists of predictive and preventive maintenance approach. The predictive maintenance uses the statistical process control technique with the real-time data and the preventive maintenance is based on the checking period of machine components or equipment. For the predictive maintenance approach, firstly, we identified components or equipment that are required maintenance, and then machine parameters that are related with the identified components or equipment. Second, we performed regression analysis to select the machine parameters that affect the quality of the manufactured products and are significant to the quality of the products. By this analysis, we can exclude the insignificant parameters from monitoring parameters and focus on the significant parameters. Third, we developed the statistical prediction models for the selected machine parameters. Current models include regression, exponential smoothing and so on. We used these models to decide abnormal patternand to schedule maintenance. Finally, for other components or equipment which is not covered by predictive approach, we adoptedpreventive maintenance approach. To show feasibility we developed an integrated maintenance support system in LabView Watchdog Agent and SQL Server environment and validated our proposed methodology with experimental data.

Study for Synthesis and Properties of Polyurethane Based on Polyester Polyol with Varying Hydroxyl Values for Automotive Pre-painted Metal Sheet Applications (자동차 선도장 강판용 폴리에스테르 폴리올 기반 폴리우레탄의 합성과 물성에 대한 연구)

  • Kang, Choong Yeol;Lee, Jae Young;Noh, Seung Man;Nam, Joon Hyun;Park, Jong Myung;Jung, Hyun Wook;Yu, Sang Soo
    • Journal of Adhesion and Interface
    • /
    • v.12 no.1
    • /
    • pp.34-42
    • /
    • 2011
  • The roll coating process is well-known for completely replacement coating system with an existing wet paint process for automotive which has low productivity and is not environment-friendly process. It is very important to evaluate the curing behavior, corrosion resistance and processing property as well as rheological behavior in order to realize a film flexibility and hardness simultaneously. In this study, we have synthesized the polyester resin modified with hydroxyl values and molecular weight to apply the pre-painted system, and then evaluated the curing behavior, deep drawing, tensile strength and rheological properties. It was observed that N-0375-40 of 40 (mg KOH/mol) hydroxyl values showed the most suitable for flexibility, film hardness, and curing behavior.

A Novel Arithmetic Unit Over GF(2$^{m}$) for Reconfigurable Hardware Implementation of the Elliptic Curve Cryptographic Processor (타원곡선 암호프로세서의 재구성형 하드웨어 구현을 위한 GF(2$^{m}$)상의 새로운 연산기)

  • 김창훈;권순학;홍춘표;유기영
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.8
    • /
    • pp.453-464
    • /
    • 2004
  • In order to solve the well-known drawback of reduced flexibility that is associate with ASIC implementations, this paper proposes a novel arithmetic unit over GF(2$^{m}$ ) for field programmable gate arrays (FPGAs) implementations of elliptic curve cryptographic processor. The proposed arithmetic unit is based on the binary extended GCD algorithm and the MSB-first multiplication scheme, and designed as systolic architecture to remove global signals broadcasting. The proposed architecture can perform both division and multiplication in GF(2$^{m}$ ). In other word, when input data come in continuously, it produces division results at a rate of one per m clock cycles after an initial delay of 5m-2 in division mode and multiplication results at a rate of one per m clock cycles after an initial delay of 3m in multiplication mode respectively. Analysis shows that while previously proposed dividers have area complexity of Ο(m$^2$) or Ο(mㆍ(log$_2$$^{m}$ )), the Proposed architecture has area complexity of Ο(m), In addition, the proposed architecture has significantly less computational delay time compared with the divider which has area complexity of Ο(mㆍ(log$_2$$^{m}$ )). FPGA implementation results of the proposed arithmetic unit, in which Altera's EP2A70F1508C-7 was used as the target device, show that it ran at maximum 121MHz and utilized 52% of the chip area in GF(2$^{571}$ ). Therefore, when elliptic curve cryptographic processor is implemented on FPGAs, the proposed arithmetic unit is well suited for both division and multiplication circuit.

Evaluation on the Vibration Performance for Void-deck Slab Combined with Deck Plate and Polystyrene Void Foam (데크플레이트와 경량성형재가 결합된 중공슬래브의 진동성능에 대한 실물실험 평가)

  • Cho, Seung-Ho;Roh, Young-Sook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.86-92
    • /
    • 2017
  • The possibility to development of floor vibration problem is larger in case of long span structure under service loads. Therefore, to improve the vibration performance of the floor, increasing of its thickness is a common method. But, increasing of thickness can lead to increase of slab self weight and reduce the effectiveness of the building. For this reason, attention for voided slab which reduces the self-weight is increasing. Hence, voided deck slab combined with deck plate and polystyrene void foam which has buoyancy prevention capacity and much developed construct ability has bee developed. By using the developed voided slab, vibration performance of a mock-up building structure has been investigated in the current study. The results according to analysis showed that they can be implemented in living and bedroom which are considered as 1st grade on the basis of "Residential Evaluation Guidelines for Vibration of Buildings" by the Architectural Institute of Japan.

Effective Process Parameters on Shape Dimensional Accuracy in Incremental Sheet Metal Forming (점진성형에서 형상 정밀도에 영향을 미치는 공정 변수)

  • Kang, Jae-Gwan;Jung, Jong-Yun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.177-183
    • /
    • 2015
  • Incremental sheet metal forming is a manufacturing process to produce thin parts using sheet metals by a series of small incremental deformation. The process rarely needs dedicated dies and molds, thus, preparation time for the process is relatively short as to be compared to conventional metal forming. Spring back in sheet metal working is very common, which causes critical errors in dimensions. Incremental sheet metal forming is not fully investigated yet. Hence, incremental sheet metal forming frequently produces inaccurate parts. This paper proposes a method to minimize dimensional errors to improve shape accuracy of products manufactured by incremental forming. This study conducts experiments using an exclusive incremental forming machine and the material for these experiments are sheets of aluminum AL1015. This research defines a process parameter and selects a few factors for the experiments. The parameters employed in this paper are tool feed rate, tool diameter, step depth, material thickness, forming method, dies applied, and tool path method. In addition, their levels for each factor are determined. The plan of the experiments is designed using orthogonal array $L_8$ ($2^7$) which requires minimum number of experiments. Based on the measurements, dimensional errors are collected both on the tool contacted surfaces and on the non-contacted surfaces. The distances between the formed surfaces and the CAD models are scanned and recorded using a commercial software product. These collected data are statistically analyzed and ANOVAs (analysis of variances) are drawn up. From the ANOVAs, this paper concludes that the process parameters of tool diameter, forming depth, and forming method are the significant factors to reduce the errors on the tool contacted surface. On the other hand, the experimental factors of forming method and dies applied are the significant factors on the non-contacted surface. However, the negative forming method always produces better accuracy than the positive forming method.

Quality Improvement Priorities for Cosmetic Medical Service Using Kano Model and Potential Customer Satisfaction Improvement Index (Kano 모델 및 잠재적 고객만족 개선 지수를 이용한 미용성형의료서비스 품질 개선 우선순위)

  • Park, Youyoung;Jung, Hunsik
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.3
    • /
    • pp.176-183
    • /
    • 2019
  • The environmental changes in the Korean cosmetic medical service industry in the $21^{st}$ century are forming intense competition among medical institutions due to the quantitative expansion of its market. For stable growth of the cosmetic medical service industry, continuous quality improvement is necessary based on empirical research on the quality of cosmetic medical services rather than external expansion. The purpose of this study is to classify the quality attributes of cosmetic medical service using Kano model and to derive the degree of satisfaction and dissatisfaction of each quality attributes through Customer Satisfaction Coefficient (CSC). Through this, the study identified strategic priorities and suggested specific step-by-step approaches and quality improvement priorities that can increase customer satisfaction using the Potential Customer Satisfaction Improvement Index (PCSI Index). Based on SERVPERF, this study used measurement tools consisting of five dimensions : tangibles, reliability, responsiveness, assurance, and empathy. In addition, it was used of measurement items reconstructed into positive, negative, and satisfaction questions for Kano model analysis, CSC analysis, and PCSI Index analysis. A total of 300 medical consumers who experienced cosmetic medical services for the past one year in medical institutions such as plastic surgery and dermatology were collected with convenient sampling. As a result, urgent items for improving the quality of service using the PCSI Index, 'Consideration for customer benefits' in empathy category was followed by 'Immediate help' and 'Sincere response' in responsiveness category, and 'Understanding customer needs' in empathy category, respectively. That is, it is required to improve human service quality attributes such as empathy and responsiveness rather than physical service quality attributes. This study contributes practically in that it provides specific and discriminatory approaches to improve customer satisfaction on cosmetic medical service quality and suggests improvement priorities.

Fabrication of Bi2Te2.5Se0.5 by Combining Oxide-reduction and Compressive-forming Process and Its Thermoelectric Properties (산화물환원과 압축성형 공정에 의한 Bi2Te2.5Se0.5 화합물의 제조와 열전특성)

  • Young Soo Lim;Gil-Geun Lee
    • Journal of Powder Materials
    • /
    • v.31 no.1
    • /
    • pp.50-56
    • /
    • 2024
  • We report the effect of plastic deformation on the thermoelectric properties of n-type Bi2Te2.5Se0.5 compounds. N-type Bi2Te2.5Se0.5 powders are synthesized by an oxide-reduction process and consolidated via spark-plasma sintering. To explore the effect of plastic deformation on the thermoelectric properties, the sintered bodies are subjected to uniaxial pressure to induce a controlled amount of compressive strains (-0.2, -0.3, and -0.4). The shaping temperature is set using a thermochemical analyzer, and the plastic deformation effect is assessed without altering the material composition through differential scanning calorimetry. This strategy is crucial because the conventional hot-forging process can often lead to alterations in material composition due to the high volatility of chalcogen elements. With increasing compressive strain, the (00l) planes become aligned in the direction perpendicular to the pressure axis. Furthermore, an increase in the carrier concentration is observed upon compressive plastic deformation, i.e., the donor-like effect of the plastic deformation in n-type Bi2Te2.5Se0.5 compounds. Owing to the increased electrical conductivity through the preferred orientation and the donor-like effect, an improved ZT is achieved in n-type Bi2Te2.5Se0.5 through the compressive-forming process.

Development and Application of Mode II Fracture Toughness Test Method Using Rock Core Specimen (시추코어를 이용한 암석의 mode II 파괴인성 시험법 개발과 적용)

  • Jung, Yong-Bok;Park, Eui-Seob;Kim, Hyunwoo
    • Tunnel and Underground Space
    • /
    • v.26 no.5
    • /
    • pp.396-408
    • /
    • 2016
  • Rock fracture mechanics has been widely applied to various fields of rock and civil engineering. But most researches covered mode I behavior, though mode II behavior is dominant in rock engineering. Until now, there is only one ISRM suggested method for mode II toughness of rock. A new SCC (Short Core in Compression) mode II toughness test method was developed considering 1) application of confining pressure, 2) easiness of notch creation, 3) utilization of existing equipment, 4) simple test procedure. The stress intensity factors were determined by 3D finite element method considering line and distributed loading conditions. The tests with granite specimens were carried out using MTS 815 rock test system with a loading rate of 0.002 mm/s. The mean value of mode II fracture toughness of granite showed $2.33MPa{\sqrt{m}}$. Mode I toughness of the same granite was $1.12MPa{\sqrt{m}}$, determined by Brazilian disk test and $K_{IIC}/K_{IC}=2.08$. The smooth fracture surface with rock powder formation also supported mode II behavior of SCC method. The SCC method can be used for the determination of mode II fracture toughness of rocks based on the current results.

Cornmeal Puffing with $CO_{2}$ Gas: Effect of Sucrose and Glyceryl Monostearate(GMS) ($CO_{2}$ 개스 주입에 의한 옥수수가루의 팽화: Sucrose와 Glyceryl Monostearate(GMS)의 영향)

  • Ryu, G.H.;Mulvaney, S.J.
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.251-256
    • /
    • 1995
  • Sucrose is added to feed materials to alter the taste and texture of extruded products. Emulsifier can affect extrudate properties by forming complexes with amylose during extrusion-cooking. These ingredients may improve the cell structure and texture of cornmeal extrudates obtained by using $CO_{2}$ as a bubble forming agent. The objective of this study was to evaluate effects of sucrose (5% and 10%) and glyceryl monostearate (GMS) (0.75% and 1%) on properties of cornmeal extrudates produced with $CO_{2}$ at injection pressures from 1.04 to 2.07 MPa. Dough temperature increased and die pressure decreased when $CO_{2}$ was injected into barrel. The addition of sucrose to cornmeal resulted in decreasing dough temperature, specific mechanical energy (SME) input, and die pressure. SME input was not significantly influenced by GMS addition but die pressure was decreased when GMS was added. Extrudate density was decreased over observed $CO_{2}$ injection compared to GMS. WSI was significantly decreased with the addition of GMS. Paste viscosity was also decreased with addition of sucrose or GMS, but significant differences of paste viscosity among $CO_{2}$ injection pressures were not found. Stucture forming and texture of cornmeal extrudates by $CO_{2}$ injection was improved by adding GMS.

  • PDF