• Title/Summary/Keyword: 성토지반

Search Result 478, Processing Time 0.029 seconds

A Study on the Lateral Movement of Bridge Abutment Using Centrifuge Test and Numerical Analysis (원심모형시험과 수치해석을 이용한 교대 측방유동에 관한 연구)

  • Yoo, Wan-Kyu;Kim, Ki-Il;Kim, Byoung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1799-1804
    • /
    • 2010
  • In regard to fill loading structures such as bridge abutments and retaining walls on soft ground, the soft ground undergoes excessive deformation, which causes the lateral movement of the ground, resulting in increased risk of much damage. In this study, a centrifuge model test was conducted to check the possibility of lateral movement of a bridge abutment during back filling in a field, and a numerical analysis considering the lateral movement of the bridge abutment under the influence of the counterweight fill method applied during construction was carried out by using MIDAS/GTS as the FEM(Finite Element Method) program. The results of this study showed that the lateral movement of the abutment can exceed the allowable lateral movement value(15mm), and that the counterweight fill method was effective for the stability of the lateral movement.

An Experimental Verification on the Efficiency of Geosynthetics on Crushed Stone Layer (쇄석배수층에 적용된 토목섬유의 효율성에 대한 실험적 검증)

  • Park, Min-Cheol;Im, Eun-Sang;Kim, Jae-Hong;Han, Heui-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.17-27
    • /
    • 2013
  • This study is to prove the efficiency of geo-synthetics on the crushed stone layer by experiments. The strength of PET mat as reinforcing soft ground was verified through the loading experiments. Also, PP mat was used to protect the blockage of crushed stone layer by the filled soil, whose efficiency was examined according to loading and infiltration conditions. The crushed stones were penetrated into clay layer if the PET mat was removed, which was verified by loading experiments. In addition, the cohesioness of soil without PP mat made the blockage of stone layer easily, which reduced the infiltration capacity by about 98%.

The Stability of Bridge Abutment Reinforced by Pile-slab on Soft Ground Undergoing Lateral Flow (측방유동 연약지반상 파일슬래브로 보강된 교대의 안정)

  • Hong, Won-Pyo;Song, Young-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.13-24
    • /
    • 2006
  • A site investigation has been performed for bridge abutments constructed on soft ground, which are deformed laterally by backfill. As the result from the evaluation of lateral movement in bridge abutment, the foundation piles were not considered as the passive pile at the design stage and the period for soft ground improvement was not proper. In order to prevent lateral movement of bridge abutment, the pile slab is proposed as a countermeasure. This method can effectively prevent the lateral flow of soft ground, since the overburden surcharge due to backfill on soft ground would be effectively delivered to bedrock through the piles in soft ground. The instrumentation system is designed and installed to investigate the behavior of bridge abutment on soft ground reinforced by pile slab. The instrumentation results show that pile slab effectively resists to the lateral movement of bridge abutment due to backfill. Also, the surcharge loads due to backfill are transmitted to the bedrock through piles. It confirms that the pile slab effectively resists to the lateral movement of bridge abutment due to backfill and the applied design method is reasonable.

Engineering Characteristics of the Light Weight Soil Used Recycled Stylofoam Beads and Disposal Soils (폐스티로폴 입자와 현장 발생토를 활용한 경량혼합토의 공학적 특성)

  • Shin, Bang-Woong;Lee, Jong-Kyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.1 no.1
    • /
    • pp.43-50
    • /
    • 2000
  • This paper presents the engineering property of light weight soil made of soil mixed with recycled stylofoam and stabilizer. Recycled stylofoam beads is able to use by lightweight fill materials because it is light, adiabatic, and effective for vibration interception. Especially, recycled stylofoam beads is easy to supply because stylofoam have been recycle item in 1996. In this study, physical and geotechnical properties of the light weight mixed soil(weathered granite soil mixed with Stylofoam Beads) were analyzed by laboratory experiments to examine its suitability for backfill materials. Laboratory tests were performed to evaluated strength, bearing capacity, weight, permeability, microphotograph analysis with variation of mixing ratio. Based on the results, it is concluded that the use of recycled stylofoam beads is acceptable lightweight fill.

  • PDF

A Study on Application as fill materials of Bottom Ash and Tire Shred by Field Test Embankment (현장시험성토를 통한 석탄회 및 폐타이어의 성토재료 활용성 검토)

  • Lee, Sung-Jin;Kim, Yun-Ki;Lee, Tae-Yoon;Shin, Min-Ho;Hwang, Seon-Keun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1032-1039
    • /
    • 2010
  • Based on the proven feasibility of bottom ash and tire shred-soil mixtures as lightweight fill materials, tire shred-bottom ash mixtures were suggested as a new lightweight fill material to replace the conventional construction material with bottom ash. Therefore, we carried out the laboratory test, field compaction test and performance test of large scale embankment in order to evaluate their suitability for the use of lightweight fill materials in the before studies. We could verified that the ash, tire-shred and the mixture are able to be the useful materials as light fill materials. In this study, we built real scale embankment with RBA(Reclamated Bottom Ash), TRBA(Tire shred-Reclamated Bottom Ash mixture), WS(Weathered Soil), BA(Bottom Ash screened by 5mm sieve) for monitoring the behavior such as settlement, lateral displacement and water content change. Furthermore, we are examining the ground water quality in the surrounding area of the test embankment.

  • PDF

A study on the behavior of cut and cover tunnel by numerical analysis (수치해석 기법을 이용한 복개 터널구조물의 거동에 관한 연구)

  • Lee, Seok-Won;Lee, Gyu-Phil;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.1
    • /
    • pp.43-54
    • /
    • 2003
  • In the deign of cut and cover tunnel, the structural analysis such as rigid frame analysis has been used for its simplicity and convenience. The structural analysis, however, can not consider the geological and geotechnical factors such as soil arching effect. In this study, the dominant factors influencing the behavior of cut and cover tunnel such as interface element, slope of excavation plane, distance between slope and tunnel lining, and location of slope of covered soil, were investigated by the numerical analysis to develop the analysis technique and design technology. Based on the results, the variation of bending moment, shear stress, axial force and displacements were evaluated and analyzed for each factor.

  • PDF

The Estimation of Volume Conversion Factor of Rock Fill using Field Density Test (현장밀도시험을 이용한 암성토 체적환산계수 산정에 관한 연구)

  • Park, Jong-Beom;Ma, Myong-Soo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.1
    • /
    • pp.9-17
    • /
    • 2017
  • In this study, the field density test was conducted as a volume conversion factor for the design of the excavation soil of the blasting rock. As a result of the field density test, the average volume conversion factor of rock was 1.001, which was smaller than the volume conversion factor of weathered rock 1.1. In the case of rock filled soil, the causes of the increase and decrease of the volume of the soil are provided by various phenomena. However, the specific techniques such as investigation and test methods are insufficient. Therefore, it was confirmed that the method of field density test is very useful method.

A Comparison Study on the Two Dimensional Consolidation Analysis Methods (2 차원(次元) 압밀해석법(壓密解析法)의 비교연구(比較研究))

  • Park, Byong Kee;Chung, Jin Sup;Park, Hae Kuen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.39-47
    • /
    • 1985
  • In this paper, a FEM analysis model was developed to solve the consolidation phenomena of embankment on the soft foundation. The developed FEM model was based on the Biot's consolidation equation which was coupled with one of three stress-strain constitutive relationships. In order to check the validity of the newly developed FEM model, the program input data were used by a test embankment which had been already constructed at Cubzac-les-ponts in France by Magnan et al. The FEM results compared to the experimental and analytical results which were obtained by the Magnan's group at Cubzac-les-ponts. The results compared showed that the consolidation phenomena were well explained by the author's FEM model which results were more accurate than the others. As for the pore water pressure, Christian-Boehmer's method used in this paper was considered preferable to Sandhu-Wilson's used by Magnan.

  • PDF

Analysis for Bearing Capacity of Paper Ash in Industrial Waste as Filling Material (성토재로서 산업폐기물 제지회의 지지력 분석)

  • Lee, Cheo-Keun;Ahn, Kwang-Kuk;Heo, Yol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.2
    • /
    • pp.13-22
    • /
    • 2001
  • In this study, centrifuge model tests were fulfilled to investigate the characteristics of bearing capacity of paper ash as a filling material. The model tests were done varying the footing width and gravity level. The settlement and vertical soil pressure by loading were measured. The results from the tests were compared with the one from FLAC program using finite difference method and bearing capacity theory. After all, it was shown that the characteristics of load-settlement represented the local shear failure, which the settlement ratio s/B showed inflection point around 25~30%. As g-level and footing width were increasing, the load strength was increasing. The ultimate bearing capacity from the tests was very closed the results from Terzaghi's theory. As the distance from footing center was increasing, the vertical soil pressure was decreasing. If E/B is higher than 7, the stress by loading was almost increasing. The vertical displacement from loading was the largest one around under the footing and was almost occurred when the depth>4cm and E/B is higher than 5.0.

  • PDF

Utilization of Selected Landfill Waste Soils for Road Embankment Materials (도로성토재료로서 폐기물 매립장 선별토사의 활용)

  • Kim, Young-Su;Jung, Sung-Kwan;Choi, Byung-Hak;Lee, Sang-Woong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.1
    • /
    • pp.29-39
    • /
    • 2003
  • The major objectives of this study were to investigate the physical characteristics of selected refuse landfill waste soils which are excepted general waste materials and assessed the possibility of recycling for road construction or embankment materials. The old landfill site which is selected for this study is located at Youngyang in Kyungsangpukdo and it had been dumped and closed for 16-25 years. Therefore, the selected landfill waste soil became to geotechnical engineering characteristics when the closed landfill site is reused for road embankment materials. It was found that it would be better to use the selected waste soil mixed with the ordinary soil.

  • PDF