수치해석 기법을 이용한 복개 터널구조물의 거동에 관한 연구

A study on the behavior of cut and cover tunnel by numerical analysis

이석원*1, 이규필*2, 배규진*3
Lee, Seok-Won•Lee, Gyu-Phil•Bae, Gyu-Jin

Abstract

In the deign of cut and cover tunnel, the structural analysis such as rigid frame analysis has been used for its simplicity and convenience. The structural analysis, however, can not consider the geological and geotechnical factors such as soil arching effect. In this study, the dominant factors influencing the behavior of cut and cover tunnel such as interface element, slope of excavation plane, distance between slope and tunnel lining, and location of slope of covered soil, were investigated by the numerical analysis to develop the analysis technique and design technology. Based on the results, the variation of bending moment, shear stress, axial force and displacements were evaluated and analyzed for each factor.

Keywords : Cut and cover tunnel, eccentric load, numerical analysis, earth pressure

요 지

현재 복개 터널구조물의 해석 및 설계에는 구조공학적 모델링 기법이 널리 적용되고 있으나, 이러한 구조공학적 모델링 기법은 지형적인 영향인자 및 soil arching 등과 같은 지반공학적 측면의 영향인자를 고려하기에 많은 어려움이 있다. 따라서, 본 연구에서는 복개 터널구조물의 합리적이고 경제적인 설계를 위하여 복개 터널구조물 의 거동에 영향을 미치는 인자로써 콘크리트 라이닝과 성토체의 계면요소, 굴착사면의 경사, 이격거리 및 성토사 면 등을 고려하여 지반공학적 모델링 기법을 이용한 수치해석 수행하였다. 이의 결과를 토대로 각 영향인자 변화 에 따른 복개 터널구조물의 역학적 거동특성을 분석하였다.

주요어 : 복개 터널구조물, 편토압, 수치해석, 토압

1. 서론

지반을 굴착하고 라이닝을 타설한 후 원지반 형태로 되메움을 실시하는 복개 터널구조물의 콘크리트 라이닝

은 상재하중, 토압, 수압, 자중, 터널 내부의 건축하중, 온도변화 및 건조수축, 지진하중 등과 같은 다양한 현장 조건 등을 고려하여 해석 및 설계를 수행하고 있다. 이와 같은 고려사항 가운데 복개 터널구조물에 작용하는 토압

[^0]은 현재 콘크리트 라이닝 완공 후 성토되는 성토체를 하 중으로 산정하여 해석을 실시하는 구조공학적 모델링 기 법이 널리 적용되고 있다．그러나 이러한 구조공학적 모 델링 기법은 복개 터널구조물에 인접하여 시공되는 굴착 사면의 경사，콘크리트 라이닝과 굴착사면의 이격거리 （이하 이격거리），성토체 토층의 성토사면 구배 및 콘크 리트 라이닝 천단부 토피고（이하 토피고）등과 같은 지 형적인 영향인자와 soil arching，콘크리트 라이닝과 성 토체 접촉면의 계면요소（interface element）등과 같 은 지반공학적 측면의 영향인자를 고려하기에 많은 어려 움이 있다（배규진，2001）．

이러한 문제점을 인식하여 Kovari와 Tisa（1982）는 유한요소해석법을 이용하여 복개 터널구조물의 되메움 지반과 터널 라이닝 사이의 상호작용을 고려한 설계 방 법을 연구하였으나，연구결과는 터널 라이닝과 되메움 지반 사이 및 굴착 사면과 되메움 지반 사이의 접촉면에 서의 상호작용（Interaction）을 고려하지 않음으로써 되메움 지반 내부에서 발생하는 아칭 효과에 의한 토압 변화를 제대로 반영하지 못하는 문제점을 갖고 있다．이 에 대해 최근 유건선（1997）은 아치형 복개 터널 구조물 의 시공 상황을 유한차분법을 이용한 해석적 연구 및 실 험적 연구를 실시하였으며，또한 이규필등（2002）은 복 개 터널구조물에 작용할 수 있는 편토압의 관점에서 연 구를 수행하였다．

개착식 복개 구조물은 되메움재보다 강성이 크기 때문 에，일반적으로 되메움 과정에 있어서 구조물 주변부에 서의 침하가 구조물 상부에서의 침하보다 크게 발생하 며，이러한 상대 변위에 의하여 복개 구조물 상부에서는 토피 하중보다 큰 연직하중이 작용하는 역학적 특성을 가지게 된다（佐藤葦否 岩崎洋一郎 1981）．복개 구조 물의 상부에 작용하는 연직 토압은 박스 구조물과 되메 움 지반의 상대 변위를 고려한 Marston－Spangler 이 론 및 그의 수정식（Spangler and Handy）을 적용함으 로써 구할 수 있으며（이상덕，2000），Kellogg（1993） 는 되메움 지반 내부에 아칭 효과를 고려함으로써 지하 에 매설된 구조물에 작용하는 연직 토압을 구하였다．한 편 박스 구조물 측벽에 발생하는 수평 토압에 관해서는 주로 정지 토압이 적용되고 있으며，측벽을 연직 강성 벽체로 적용시켜 이에 작용하는 수평 토압에 대해 Handy
（1985），김홍택（1990），정성교와 백승훈（1993）에 의한 연구가 수행되었으며，특히 정성교와 백승훈（1993）은 사일로 이론을 수정하여 되메움 굴착 형상에 따른 수평 토압의 산정식을 유도하였다．그러나 이러한 연구는 제 한된 경계 조건하에서 수행된 연구로서，본 연구에서 고 려하는 경계조건이 복잡하고 다양한 형상의 구조물이 요 구되는 산악지대에서의 복개 터널구조물의 설계에 대해 서는 이들 연구 결과를 적용하기에 한계가 있다（이상덕， 2000）．

따라서，본 연구에서는 복개 터널구조물의 합리적이고 경제적인 설계를 위한 기본연구로써 좁은 되메움 공간에 서의 토압경감과 콘크리트 라이닝과 성토체의 상호작용 을 고려하기 위하여 지반공학적 모델링 기법을 이용한 수치해석을 수행하였다．복개 터널구조물의 거동 영향인 자로써 콘크리트 라이닝과 성토체의 계면요소，굴착사면 의 경사 및 이격거리 등을 고려하였으며，또한 성토체는 원지반의 지형조건 복원 등을 목적으로 일정 구배를 갖 도록 설계 및 시공되므로，이로 인하여 콘크리트 라이닝 에 작용하는 편토압과 편토압에 의한 복개 터널구조물의 거동을 분석하였다．

2．수치해석 조건 및 입력변수

본 연구에서는 유한요소 해석프로그램인 PLAXIS ${ }^{\text {Ver．} 7.2}$ 를 이용하여 터널은 2 차선 도로터널을 기본 단면으로 선 정하였으며，콘크리트 라이닝은 beam요소，지반요소는 2차원 평면 변형율요소（plain strain element）로 모델 링 하였다．단，수치해석시 상재하중，수압，터널 내부의 건축하중，온도하중 및 건조수축，지진하중 등은 고려하 지 않았다．복개 터널구조물은 시공방법상 단계 성토가 진행되므로 이를 해석에 그대로 반영하였다．성토체와 콘크리트 라이닝의 상호작용이 수반되는 일련의 과정을 수치해석적으로 모사하기 위하여 터널 축에 연직인 평면 단면을 고려하였으며，성토체의 토압작용 메커니즘을 보 다 정확하게 규명하기 위하여，이질적이 매체가 접하는 콘크리트 라이닝과 성토체 접촉면에 계면요소（interface element）를 모델링하여 경계면에서 발생하는 마찰력을 고려하였다．

복개 터널 라이닝의 설계를 위한 원지반의 강도정수는 원위치 시험 등을 통하여 합리적인 값을 산정하여야 하 며, 이러한 강도정수는 현장의 지질공학적 특성에 따라 넓은 범위를 보이게 된다. 따라서 본 연구에서는 수치해 석을 위한 기본 입력물성치 산정을 위하여 한국건설기술 연구원 (1998)에서 수행한 연구결과를 토대로 하여 표 1 과 같이 원지반 강도정수를 산정하였다. 일반적으로 도 심지 터널에서는 현장 특성상 성토사면의 구배, 형상 및 토피고 등과 같이 다양한 조건의 발생 및 상기 영양인자 의 변화요인이 적다고 판단하여, 본 연구에서는 제시된 연구결과 중 산악터널이란 관점에서 입력물성치를 산정 하였다.

성토체의 지반정수는 성토시 다짐도, 성토체의 심도변 화 등과 같은 다양한 현장조건에 따라 변화하며, 수치해 석시 상기 영향에 의한 성토체의 지반정수 변화를 고려 하기에는 많은 어려움이 있다. 따라서 본 연구에서는 성 토체의 지반정수 결정을 위하여 동일 조건에 대하여 현 재 복개 터널라이닝의 해석에 널리 적용되고 있는 구조 공학적 해석기법 및 지반공학적 해석기법을 이용한 수치 해석을 실시하고, 두 해석기법에 의하여 발생하는 단면 력 및 변위를 비교하여, 유사한 결과를 보이는 성토체 지반정수 산정을 위한 parametric study를 수행하였 다. 이렇게 지반정수를 산정한 또다른 이유는 구조공학 적 해석기법과 지반공학적 해석기법에서 얻은 결과를 상 호 비교하는데 있었다. 성토체의 물성치 산정을 위한 parametric study 해석조건은 콘크리트 라이닝 천단부 로부터 성토고는 1.0D (D: 터널 단면 등가 환산직경, 약 10.66 m), 성토체 단위중량은 $19 \mathrm{kN} / \mathrm{m}^{3}$ 으로 가정하 였으며, 수평방향 토압은 K_{0} Condition을 기준으로 하 였다.

3. 복게 터널구조물의 역학적 거동 영향인자

본 연구에서는 복개 터널구조물의 역학적 거동에 영향 을 미치는 여러 가지 인자 중에서 다음과 같은 대표적인 영향인자의 분석을 수행하기 위하여, 다음과 같이 각 영 향인자별로 해석조건을 변화시켜 가며 수치해석을 수행 하였다.

3.1 계면요소 모델링

계면요소는 그림 1 에서 보이는 바와 같이 수치해석시 계면요소를 경계로 연결되어 있는 각 요소 (elements) 를 전단강성과 연직강성을 갖는 스프링으로 모델링하는 방법과 휽의 강도정수 $(\mathrm{c}, \varnothing)$ 에 감소계수 (R) 를 이용하여 계면요소를 모델링하는 방법이 등이 일반적으로 적용되 고 있다 (식 (1) 및 (2) 참조).

$$
\begin{align*}
& c_{\text {interface element }}=R \cdot c_{\text {soil }} \tag{1}\\
& \tan \varnothing \text { interface element } \tag{2}
\end{align*}=R \cdot \tan \emptyset_{\text {soil }} \text { }
$$

여기서,
$c_{\text {interface element }}$: 계면요소의 점착력

그림 1. 전단 및 연직 강성스프링으로 연결된 계면요소 개념도

표 1. 수치해석을 위한 입력물성치

		단위중량 $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$	탄성계수 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	포아송비	점착력 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	내부마찰각 $\left({ }^{\circ}\right)$	K_{0}
성토체		19	3.5×10^{4}	0.35	10	30	$1-\mathrm{sin} \mathrm{\varnothing}$
원지반	풍화암	23	3.9×10^{5}	0.30	184	33	0.5
	연 암	25	2.1×10^{6}	0.27	930	37	1.0
	경 암	27	1.9×10^{7}	0.23	1400	43	1.0

$c_{\text {soil }}$: 계면요소와 접하는 훍의 점착력
$\emptyset_{\text {interrace element }}$: 계면요소의 내부마찰각
$\emptyset_{\text {soil }}$: 계면요소와 접하는 훍의 내부마찰각
R : 감소계수

본 연구에서는 콘크리트 라이닝 및 굴착 사면과 접하여 시공되는 성토체의 강도정수에 감소계수를 적용하여 계 면요소를 모사하는 기법을 이용하여 계면요소를 모델링 하였다. 계면요소의 모델링을 위한 감소계수 (R) 는 표 2 에서 보이는 바와 같이 지반의 종류 및 휽과 접하게 되 는 대상 구조물의 재질에 따라 그 값이 변화하는 것으로 제안되고 있다. 계면요소 모델링이 복개 터널구조물에 미치는 영향을 분석하기 위하여 계면요소를 고려하지 않 은 경우, 콘크리트 라이닝과 성토체 접촉면에 계면요소 를 고려한 경우, 콘크리트 라이닝 및 굴착사면과 성토체 접촉면에 계면요소를 고려하는 경우 각각 $\mathrm{R}=0.7$ 및 $\mathrm{R}=0.9$ 등 5 가지 해석조건에 대하여 수치해석을 수행하 였다 (표 3 참조).

3.2 굴착시면 구배 및 이격거리 모델링

콘크리트 라이닝 인근에 위치하는 굴착사면의 구배변

표 2. 계면요소의 적용 범위

지반의 종류	대상 구조물의 재질	R	비고
sand	steel	$2 / 3$	
	concrete	$0.8 \sim 1.0$	
clay	steel	0.5	
	concrete	$0.7 \sim 1.0$	

그림 2. 굴착사면 구배 및 이격거리 변화에 따른 영향검토를 위한 개념도

화가 복개 터널구조물에 미치는 영향을 분석하기 위하 여, 천단부 성토고가 1.5 D 인 경우에 대하여, 굴착사면의 구배를 원지반 조건이 풍화암인 경우 $1: 1$, 연암은 $1: 0.8$ 및 경암은 $1: 0.5$ 로 가정하였다. 또한 이러한 각각의 굴 착사면 구배별로 이격거리를 $1 \mathrm{~m}, 2 \mathrm{~m}, 3 \mathrm{~m}$ 로 변화시켜 수치해석을 수행하였다 (그림 2 참조).

3.3 성토시면 설치위치 모델링

복개 터널구조물 시공 후 지형복원 등을 목적으로 일정 구배를 갖는 성토사면의 설계 및 시공시, 콘크리트 라이 닝에는 편토압이 작용하게 되며 따라서 복개 터널구조물 의 역학적 거동이 크게 변화하게 된다. 따라서 본 연구에 서는 성토사면에 의한 복개 터널구조물의 영향검토를 수 행하기 위하여 그림 4 에서 보이는 바와 같이 복개 터널구 조물의 실제 현장조건과 유사한 단면을 가정하였다. 성 토사면의 설치위치는 콘크리트 라이닝 천단부로부터 2.5 m 씩 이격시켜 총 7가지 조건에 대하여 수치해석을 수행 하였으며, 성토사면 설치위치의 변화에 따른 해석조건의 구분은 표 4와 같다.

표 3. 해석조건별 계면요소 및 감소계수의 적용 조건

구 분	적 용 조 건		비 고
	계면요소 적용 여부 및 적용범위	감소계수	
CASE 2	계면요소 고려 안 함	0.9	계면요소 1 개
CASE 3	콘크리트 라이닝과 성토체 접촉면에 계면요소 고려	0.7	계면요소 1개
CASE 4	콘크리트 라이닝과 성토체 접촉면에 계트 련요소 고령 및 굴착사면과 성토체 접촉면에 계면요소 고려	0.9	계면요소 2개
CASE 5	콘크리트 라이닝 및 굴착사면과 성토체 접촉면에 계면요소 고려	0.7	계면요소 2개

그림 3. 성토사면에 의한 영향검토를 위한 개념도

표 4. 성토사면 설치위치 변화별 해석조건 구분

구 분	상부성토사면 설치위치	비고
case 1	콘크리트 라이닝 Center Line	
case 2	콘크리트 라이닝 Center Line으로부터 우측으로 2.5 m	
case 3	콘크리트 라이닝 Center Line으로부터 우측으로 5 m	
case 4	콘크리트 라이닝 Center Line으로부터 우측으로 7.5m	
case 5	콘크리트 라이닝 Center Line으로부터 우측으로 10m	
case 6	콘크리트 라이닝 Center Line으로부터 우측으로 12.5 m	
case 7	콘크리트 라이닝 Center Line으로부터 우측으로 15 m	

원지반은 풍화암, 연암, 경암으로 구성하여, 굴착사면 의 구배는 경암은 $1: 0.5$, 연암은 $1: 0.8$ 및 풍화암은 $1: 1.0$ 으로 모사하였다. 암질 구성조건은 라이닝 천단부 까지 경암, 콘크리트 라이닝 천단부부터 1.0 D 지점까지 연암 그리고 상부는 풍화암으로 구성하였다. 각 암질변 화 및 굴착사면 구배 변화지점에 소단을 폭 1 m 로 모사하 였으며, 콘크리트 라이닝 및 굴착사면과 성토체의 접촉 면에 계면요소를 고려하였다. 또한 콘크리트 라이닝과 굴착사면의 이격거리는 3 m , 콘크리트 라이닝 천단부의 성토고는 1.0 D 그리고 콘크리트 라이닝 좌측 측벽부의 연직선상까지 사면구배 $1: 1.5$ 의 하부성토사면을 모사하 였다.

4. 수치해석의 결과 및 분석

복개 터널구조물의 거동에 영향을 미치는 영향인자로 서 전술한 바와 같이 계면요소, 굴착사면의 구배, 이격거 리 및 성토사면의 설치위치 변화에 대하여 다양한 조건 으로 수치해석을 수행하여 각 인자의 영향범위를 검토하 였다.

4.1 계면요소 변화에 따른 영향검토

표 3 에서 제시한 조건과 같이 수치해석을 수행한 결과, 표 5 에서 나타낸 바와 같이 계면요소를 고려하는 경우 콘크리트 라이닝에 발생하는 단면력 및 변위는 계면요소 를 고려하지 않은 경우보다 감소하는 것으로 나타났다. 또한, 동일한 부분에 계면요소를 고려하는 경우 감소 계 수 (R) 가 감소하거나, 또는 계면요소의 고려부분이 콘크 리트 라이닝 및 굴착사면과 성토체의 접촉면으로 확대된 경우에 단면력 및 변위가 감소하는 것으로 나타났다. 굴 착사면과 성토체의 접촉면에 계면요소를 고려하는 경우, 계면요소의 전단변형으로 인하여 굴착사면을 구성하는 원지반과 성토체의 주응력은 불연속면이 발생하게 되고, 성토체 내부의 soil arching 효과 등으로 인하여 그림 4 에서와 같이 콘크리트 라이닝의 천단부 주변 성토체 내 부에 전단력이 증가하는 것으로 나타났다.

콘크리트 라이닝에 발생하는 단면력 가운데 표 5 에서 알 수 있듯이 축력이 계면요소 적용 조건변화에 따라 가 장 큰 영향을 받는 것으로 나타났으며, 또한 수평변위가 연직변위보다 계면요소 적용 조건변화에 다소 크게 영향 을 받는 것으로 나타났다. 이는 콘크리트 라이닝과 성토 체의 접촉면에 계면요소가 적용되는 경우, 콘크리트 라 이닝에 전달되는 하중이 계면요소의 전단저항에 의하여 감소되며, 이로 인하여 콘크리트 라이닝의 횡방향 구속 력이 감소하기 때문인 것으로 판단된다.

4.2 굴착사면 구배 및 이격거리 변화에 따른 영향 검토

복개 터널구조물의 거동에 영향을 미치는 인자로서 그 림 2에 나타낸 조건과 같이 굴착사면의 구배변화 및 이격

표 5. 해석조건별 단면력 및 변위 변화관계

구 분	휨모멘트(kN-m)		전단력(kN)		축력(kN)		수평변위(mm)		연직변위(mm)	
	최대값	감소율								
CASE 1	1337.4	-	860.4	-	3601.3	-	-3.77	-	-7.96	-
CASE 2	1319.8	1.4\%	861.9	$0.1 \%^{\left({ }^{\text {(4) }} \text {) }\right.}$	3392.5	5.8\%	-3.71	1.6\%	-7.95	0.1\%
CASE 3	1316.7	1.5\%	836.5	2.7\%	2958.9	17.8\%	-3.60	4.5\%	-7.77	2.4\%
CASE 4	1304.5	2.5\%	857.4	0.4\%	3460.1	4.0\%	-3.65	3.2\%	-7.79	2.1\%
CASE 5	1218.5	8.9\%	819.5	1.8\%	3236.7	10.2\%	-3.20	15.1\%	-7.32	8.0\%

※ - : 조건변화에 따른 영향검토 기준

거리 변화에 의한 영향을 검토한 결과, 대체적으로 예상 되었듯이 성토량 증가에 따라 복개 터널 라이닝에 추가 적인 하중 및 변위가 발생하는 것으로 밝혀졌다. 우선 굴착사면 구배변화에 의한 일반적인 경향을 살펴보면 콘 크리트 라이닝에 발생하는 최대 휨모멘트, 최대 전단력 및 최대 축력 등과 같은 단면력과 최대 수평변위 및 최대 연직변위는 이격거리가 동일한 조건에서 굴착사면의 구 배가 낮아질수록 즉, 경사가 급해질수록 점차 감소하는 경향을 나타냈다. 이는 이격거리가 동일한 경우 굴착사 면의 구배가 높아짐에 따라 즉, 경사가 완만해짐에 따라 성토량이 증가하게 되고, 이로 인하여 콘크리트 라이닝 에 작용하는 수평 및 연직토압이 증가하기 때문인 것으 로 판단된다.

또한 각각의 굴착사면 구배조건에서 이격거리 변화에 의한 일반적인 경향을 살펴보면, 굴착사면의 구배가 $1: 0.5$ 및 $1: 0.8$ 인 경우 이격거리가 증가하게 되면 성토

량이 증가하고, 이로 인하여 콘크리트 라이닝에 작용하 는 토압 등이 증가하게 되어 단면력 및 변위가 증가하는 것으로 나타났다. 그러나 굴착사면의 구배가 $1: 1.0$ 인 경 우는 이격거리가 증가함에 따라 대체적으로 표 6에서 나 타난 바와 같이 단면력과 변위는 감소하는 상반되는 결 과를 보이는 것으로 나타났다. 이는 굴착사면의 구배가 $1: 0.5$ 에서 $1: 1.0$ 으로 경사도가 낮아짐에 따라 굴착사면 과 성토체의 접촉면에서 발휘될 수 있는 전단력의 작용 메커니즘의 변화에 기인한 것으로 판단된다. 즉, 굴착사 면 구배가 $1: 0.5$ 및 $1: 0.8$ 인 경우 이격거리에 관계없이 굴착사면과 성토체의 접촉면에 발생하는 전단응력이 계 면요소의 전단강도를 초과하게 되며, 이로 인하여 전 성 토하중이 터널에 작용되는 것으로 판단되나, 구배가 $1: 1.0$ 인 경우 이격거리가 증가할수록 접촉면의 전단저항 이 발휘되어 어느 정도 하중을 지지하는, 즉 아칭효과가 발휘되는 것으로 판단된다.

표 6. 굴착사면 구배 및 이격거리 변화에 따른 단면력 및 변위 변화관계

구 분			$\begin{aligned} & \text { ㅎㅟㅟ모멘트 } \\ & (\mathrm{kN}-\mathrm{m}) \end{aligned}$	전단력 (kN)	축력 (kN)	$\begin{gathered} \text { 수평변위 } \\ \text { (mm) } \end{gathered}$	연직변위 (mm)
이격거리 1 m	$\begin{gathered} \text { 굴착사면 } \\ \text { 구배 } \end{gathered}$	1:0.5	1264.3	787.5	2860.8	-3.4	-7.3
		1:0.8	1310.3	830.6	3243.8	-3.7	-7.8
		1:1.0	1424.5	908.3	3551.9	-4.2	-8.6
$\begin{gathered} \text { 이격거리 } \\ 2 \mathrm{~m} \end{gathered}$		1:0.5	1280.5	814.4	3040.7	-3.5	-7.5
		1:0.8	1241.9	821.7	3222.6	-3.3	-7.4
		1:1.0	1418.6	906.7	3625.5	-4.1	-8.6
이격거리 3 m 3m		1:0.5	1302.6	820.3	3181.5	-3.5	-7.6
		1:0.8	1304.5	857.4	3460.1	-3.6	-7.8
		1:1.0	1374.4	906.3	3568.0	-3.8	-8.3
$\begin{gathered} \text { 굴착사면 } \\ \text { 구 배 } \\ 1: 0.5 \end{gathered}$	이격거리	1 m	1264.3	787.5	2860.8	-3.4	-7.3
		2 m	1280.5	814.1	3040.7	-3.5	-7.5
		3 m	1302.6	820.3	3181.5	-3.5	-7.6
$\begin{gathered} \text { 굴착사면 } \\ \text { 구 배 } \\ \text { 1:0.8 } \end{gathered}$		1 m	1310.3	830.6	3243.8	-3.7	-7.8
		2 m	1241.9	821.7	3222.6	-3.3	-7.4
		3 m	1304.5	857.4	3460.1	-3.6	-7.8
$\begin{gathered} \text { 굴착사면 } \\ \text { 구 배 } \\ \text { 1:1.0 } \end{gathered}$		1 m	1424.5	908.3	3551.9	-4.2	-8.6
		2 m	1418.6	906.7	3625.5	-4.1	-8.6
		3 m	1374.4	906.3	3568.0	-3.8	-8.3

이렇듯, 수치해석 결과 굴착사면의 구배가 완만해지거 나 이격거리가 증가하는 경우 성토량이 증가하게 되며, 성토량이 증가함에 따라 단면력 및 변위는 일반적으로 증가하는 것으로 나타났다. 이러한 경향을 보다 정량적 으로 분석하고자 그림 5 에서와 같이 단면력 및 변위와

성토량과의 관계를 조사하여보았다. 연구결과, 복개 터 널구조물에 발생하는 최대 축력 및 최대 전단력은 각각 상관관계가 $\mathrm{R}^{2}=0.93, \mathrm{R}^{2}=0.84$ 정도의 비교적 높은 상 관성을 갖으며 성토량 증가와 비례적으로 증가하는 것으 로 나타났다. 그러나 최대 휨모멘트, 최대 수평변위 및

(a) 성토량과 단면력 상관관계

(b) 성토량과 변위 상관관계

그림 5. 성토량과 단면력 및 변위 상관관계

최대 연직변위는 성토량 증가와는 큰 상관성을 보이지 않는 것으로 나타났다. 따라서 굴착사면 구배 및 이격거 리 변화의 관점에서 복개 터널구조물의 역학적 거동은 대체적으로 성토량과 직접적인 상관성을 갖음을 보이나 단순히 성토량에 의한 함수만은 아니고, 지형적 영향인 자 뿐만 아니라 다양한 현장조건에 의한 영향을 받는 것 으로 판단된다.

4.3 성토시면 설치위치 변화에 따른 영향검토

그림 3에서 제시한 바와 같이 상부 성토사면의 설치위 치 변화에 따른 복개 터널구조물의 거동을 분석한 결과, 일반적으로 기대되었듯이 상부 성토사면의 위치가 복개 터널로부터 멀어질수록 단면력과 변위가 감소하는 경향 을 보였다. 이는 성토량과 밀접한 관계가 있는 것을 의미 하여, 이러한 경향속에서 상부 성토사면의 위치가 터널 의 중심부에서 측벽부까지 변화하는 동안에는 거동의 변 화가 크게 일어났으나, 일단 상부 성토사면의 설치위치 가 측벽부를 벗어나면 미소하게 거동이 변화하여 복개 터널구조물의 거동에는 크게 영향을 미치지 않는 것으로 나타났다.
따라서 이러한 연구결과를 보다 정량적으로 분석하고 자 그림 6 에서와 같이 단면력 및 변위와 성토량과의 관계 를 조사하여 보았다. 성토사면의 설치위치가 굴착사면으 로부터 콘크리트 라이닝 천단부로 근접함에 따라 성토사 면을 구성하는 되메움 토층의 성토량이 증가하게 되므

(a) 성토사면 성토량과 단면력 변화관계

로, 그림 6에서 보이는 바와 같이 콘크리트 라이닝에 발 생하는 단면력 및 변위는 증가하는 것으로 나타났다. 성 토사면을 구성하는 성토량의 변화에 따른 단면력과 변위 의 상관관계는 $R^{2}=0.98$ 이상의 높은 상관성을 갖는 것 으로 나타났다. 성토사면 성토량의 증가에 따른 단면력 및 변위의 증가 경향을 살펴보면, 단면력 가운데 휨모멘 트의 증가가 가장 큰 영향을 받는 것으로 나타났으며, 또한 복개 터널구조물에 성토사면의 영향에 의한 편토압 이 작용하게 되므로 성토사면 성토량이 증가함에 따라 수평변위가 연직변위보다 큰 영향을 받는 것으로 나타났다.
또한, 성토사면 형성에 따른 편토압 영향을 검토하기 위하여 콘크리트 라이닝 천단부를 기준으로 좌우측에 발 생하는 최대 단면력의 관계를 기준으로 표 7 및 그림 7 과 같이 검토하였다.
표 7 및 그림 7에서 보이는 바와 같이 성토사면의 영향 으로 인하여 편토압이 복개 터널구조물에 작용하는 경 우, 콘크리트 라이닝의 천단부를 기준으로 좌•우측부에 발생하는 최대 단면력은 비대칭적인 양상을 보이며, 편 토압의 영향으로 인하여 좌. 우측에 발생하는 단면력 가 운데 휨모멘트가 최대 약 49% 의 차이를 보여 편토압의 영향을 가장 크게 받는 것으로 나타났다. 콘크리트 라이 닝에 발생하는 휨모멘트는 복개 터널구조물의 설계시 철 근량 $\left(\mathrm{A}_{\mathrm{s}}\right)$ 및 철근배근 등을 결정하는 주요사항이며, 따 라서 복개 터널구조물의 설계시 성토사면의 영향으로 인한 편토압의 적절한 고려가 수행되지 않는다면 구조적 안정성 확보에 큰 문제점을 야기할 수 있을 것으로 판단된다.

(b) 성토사면 성토량과 변위 변화관계

그림 6. 성토사면 성토량 변화에 따른 단면력 및 변위 변화 관계

표 7. 콘크리트 라이닝 좌 우측부 최대 단면력

구분	휨모멘트(kN-m)			전단력(kN$)$			축력(kN)		
	좌측	우측	비율(\%)	좌측	우측	비율(\%)	좌측	우측	비율(\%)
case 1	1031.6	530.3	48.6	544.9	345.2	36.7	2070.5	1961.0	5.3
case 2	927.6	502.5	45.8	496.4	322.0	35.1	1979.7	1884.9	4.8
case 3	842.2	486.0	42.3	456.3	305.9	33.0	1907.2	1829.0	4.1
case 4	778.2	488.0	37.3	425.3	296.5	30.3	1852.7	1790.0	3.4
case 5	735.4	493.2	32.9	403.1	292.3	27.5	1915.9	1764.2	2.8
case 6	707.9	506.4	28.5	388.7	291.1	25.1	1793.8	1748.4	2.5
case 7	691.8	513.0	25.8	380.3	290.0	23.5	1782.1	1739.4	2.4

※비율 $=($ 좌측부 최대 단면력-우측부 최대 단면력 $) /$ 좌측부 최대 단면력 $\times 100$

그림 7. 상부 성토사면 설치위치 변화에 따른 좌•우측 최대 단면력 차이 변화율

전술한 바와 같이 성토사면의 형성은 편토압을 유발하 고 성토사면의 위치변화에 따라 그 정도가 변화하는 것 으로 나타났다. 따라서, 본 연구에서는 이러한 성토사면 의 위치변화가 실제 현장의 설계에 미치는 영향정도를 정량적으로 분석하고자 성토사면 설치위치 변화에 따른 수치해석결과를 토대로 콘크리트 라이닝 단면설계를 수 행하였다. 콘크리트 라이닝의 단면설계시 강도설계법을 이 용하였으며, 휨모멘트에 대하여 단면설계를 수행하였다. 콘크리트 라이닝 단면설계시 동일한 극한 휨모멘트에 대 하여 콘크리트 단면의 유효심도 (d), 철근 공칭직경 및 인장강도 등에 따라 다양한 단면이 설계될 수 있으나, 본 연구에서는 콘크리트 라이닝 거동영향인자 변화에 따 른 단면의 상호 비교•검토를 위하여 콘크리트 단면의

그림 8. 콘크리트 라이닝 단면설계를 위한 기본단면

폭 (B)은 100 cm , 유효심도 (d)는 70 cm , 인장측 주철근 2 열 배근을 기본단면으로 선정하였다. 또한 주철근의 배 근간격은 철근조립 및 콘크리트 타설 등과 같은 현장 시 공성 등을 고려하여 단면설계시 상•하 주철근 배근간격 은 최대 12.5 cm 로 동일한 배근간격이 되도록 하였으며, 주철근 상•하의 간격은 10 cm 로 선정하였다 (그림 8 참 조). 또한, 콘크리트 단면설계시 철근량 (As) 은 현장에 서 철근조립 등과 같은 작업성을 고려하여 1열과 2열 동 일한 공칭직경의 이형철근이 배근되도록 설계하였으며, 상기와 같은 조건에서 설계 휨모멘트 $\left(\varnothing \cdot \mathrm{M}_{\mathrm{d}}\right)$ 가 부족한 경우 2 열에 배근되는 이형철근의 공칭직경을 증가시킨 후 재 설계를 실시하였다.

상부성토사면 설치위치 변화에 따른 콘크리트 라이닝

표 8. 상부성토사면 설치위치 변화에 따른 단면설계

구 분	극한 휨모멘트 ($\mathrm{M}, \mathrm{kN}-\mathrm{m}$)	설계 휨모멘트 ($\varnothing \cdot \mathrm{M}_{\mathrm{d}}, \mathrm{kN}-\mathrm{m}$)	철근량 ($\mathrm{As}, \mathrm{cm}^{2}$)		
case 1	1031.6	1091.0	1열	19@125	$45.84 \mathrm{~cm}^{2}$
			2열	19@125	
case 2	927.6	1091.0	1열	19@125	$45.84 \mathrm{~cm}^{2}$
			2열	19@125	
case 3	842.2	923.6	1열	16@125	$38.808 \mathrm{~cm}^{2}$
			2열	19@125	
case 4	778.2	923.6	1열	16@125	$38.808 \mathrm{~cm}^{2}$
			2열	19@125	
case 5	735.4	756.3	1열	16@125	$31.776 \mathrm{~cm}^{2}$
			2열	16@125	
case 6	707.9	756.3	1열	16@125	$31.776 \mathrm{~cm}^{2}$
			2열	16@125	
case 7	691.8	756.3	1열	16@125	$31.776 \mathrm{~cm}^{2}$
			2열	16@125	

※ 예) $22 @ 125$: 이형철근 D22(공칭직경:22.2mm) 125 mm 간격으로 배근

단면설계를 수행한 결과 표 8 에 나타낸 바와 같이 설계단 면은 크게 3 종류의 단면으로 설계되었으며, 동일한 단면 이 설계되는 조건을 구분하면 상부성토사면이 복개 터널 라이닝 측벽부 내측에서 설치되는 경우 (case 1 및 2), 상부성토사면이 복개터널 측벽부로부터 7.5 m 이내의 범 위 안에서 설치되는 경우 (case 3 및 4) 및 상부성토사면 의 설치위치가 콘크리트 라이닝 측벽부로부터 7.5 m 이상 이격되어 설치되는 경우 (case $5 \sim 7$) 등 3 가지로 구분되 어지며, 따라서 상부성토사면의 설치위치에 따라 적절한 콘크리트 단면 설계를 위한 해석이 수행되어져야 할 것 으로 판단된다.

5. 결론

본 연구에서는 복개 터널구조물의 시공시 콘크리트 라 이닝과 성토체의 계면요소 변화, 굴착사면의 경사 및 이 격거리 변화 그리고 편토압을 유발하는 상부성토사면의 위치변화에 따른 휨모멘트, 전단력 및 축력 등과 같은 단면력과 변위 등과 같은 복개 터널의 기본거동 분석 및

영향인자 분석을 위하여 지반공학적 모델링 기법을 이용 한 수치해석을 수행하였으며, 복개 터널구조물의 역학적 거동 분석을 통한 연구결과를 정리하면 다음과 같다.

1. 콘크리트 라이닝 및 굴착사면과 성토체의 접촉면에 계면요소를 고려하여본 결과, 계면요소의 전단변형 으로 인하여 굴착사면과 성토체의 주응력은 불연속면 이 존재하게 되며, 또한 성토체 내부의 soil arching 효과 등으로 인하여 콘크리트 라이닝 천단부 주변 성 토체 내부에 전단력이 증가하는 것으로 나타났다. 따 라서, 계면요소의 고려 여부는 상대적으로 해석결과 에 큰 영향을 미치지 않으나, 복개 터널 구조물 시공 시 soil arching 등을 고려하기 위하여 필요한 합리 적인 모델링이라고 판단된다.
2. 굴착사면 구배 및 이격거리 변화의 관점에서 복개 터 널구조물의 역학적 거동은 대체적으로 성토량과 직접 적인 상관성을 가짐을 보이나 단순히 성토량에 의한 함수만은 아니고, 지형적 영향인자 뿐만 아니라 다양 한 현장조건에 의한 영향을 받는 것으로 판단된다.
3. 상부 성토사면의 설치위치 변화에 따른 복개 터널구

조물의 거동을 분석한 결과，상부 성토사면의 위치가 복개 터널로부터 멀어질수록 단면력과 변위가 감소하 는 경향을 보였다．이는 성토량과 밀접한 관계가 있는 것을 의미하여，이러한 경향속에서 상부 성토사면의 위치가 터널의 중심부에서 측벽부까지 변화하는 동안 에는 거동의 변화가 크게 일어났으나，일단 상부 성토 사면의 설치위치가 측벽부를 벗어나면 미소하게 거동 이 변화하여 복개 터널구조물의 거동에는 크게 영향 을 미치지 않는 것으로 판단된다．
4．콘크리트 라이닝에 발생하는 단면력 가운데 휨모멘트 는 성토사면 시공에 따른 편토압의 영향을 가장 크게 받는 것으로 나타났다．콘크리트 라이닝에 발생하는 휨모멘트는 복개 터널구조물의 설계시 철근량 및 철 근배근 등을 결정하는 주요사항이며，따라서 복개 터 널구조물의 설계시 성토사면의 영향으로 인한 편토압 의 적절한 고려가 수행되지 않는다면 구조적 안정성 확보에 큰 문제점을 야기할 수 있을 것으로 판단된다．

참고문헌

1．김홍택（1990），＂암 근처에 설치되는 옹벽의 발생토압에 관한 연구＂，대한토질공학회지，제6권，제 3 호，pp．7－17．
2．배규진，이규필（2001），＂복개 터널라이닝 해석을 위한 모델링 기법에 관한 연구＂，터널공학회논문집，Vol．3， No．2，pp．13－22．
3．유건선（1997），＂실험 및 수치해석에 의한 복개터널 주위 의 지압 및 터널 복공의 역학적 거동에 관한 연구＂，서울 대학교 자원공학과 박사학위논문．

4．이규필，이석원，박시현，배규진（2002），＂복개 터널구조 물의 역학적 거동 영향인자 분석을 위한 수치해석적 연 구＂，한국지반공학회 봄 학술발표회，pp．703－710．
5．이상덕（2000），＂지중 박스구조물에 작용하는 토압＂，한 국지반공학회논문집，Vol．16－1，No．2，pp．243－250．
6．이상덕，문창렬，김은섭，이종규（1997），＂되메움 지반에 의한 수평 토압에 관한 연구＂，대한토목학회논문집，Vol． 17－III－3，pp．285－292．
7．이승래，백규호，박현일（1993），＂아칭 효과를 고려한 강 성체 옹벽의 주동 토압 산정＂，대한토목학회 학술발표회 집，pp．457－460．
8．정성교，백승훈（1993），＂비점성토로 뒷채움한 강성옹벽 에 작용하는 정적토압＂，한국지반공학회논문집，제9권， 제1호，pp．69－75．
9．한국건설기술연구원（1998），＂국내 터널설계 기술력 향 상을 위한 신기술 연구＂，수탁연구사업，pp．55－80．
10．佐藤葦平，岩崎洋一郞（1981），＂高盛土下の剛性力 ルバートに作用する鉛直土壓の輕減工法について＂，土と基礎，Vol．12，pp．3－7．
11．Handy，R．L．（1985），＂The Arch in Soil Arching＂， Journal of Geotechnical Engineering，ASCE，Vol． 111，No．3，pp．302－318．
12．Kellogg，C．G．（1993），＂Vertical Earth Loads on Buried Engineered Works＂，Journal of Geotechnical Engineering Division，ASCE，Vol．119，No．3，pp． 487－506．
13．Kovari，K．and Tisa，A．（1988），＂Comparison of Calculated and Measured Displacements on Cut－and－Cover Tunnels，＂Proceedings of the 5th International Synposium on Tunnelling，London， The Institution of Mining and Metallurgy and British Tunnelling Society，pp．357－362．

이석원

한국건설기술연구원 토목연구부 지반구조물그룹 선임연구원 slee@kict.re.kr

배규진

한국건설기술연구원 토목연구부 연구부장 gjbae@kict.re.kr

[^0]: *1 한국건설기술연구원 토목연구부 지반구조물그룹 선임연구원
 *2 한국건설기술연구원 토목연구부 지반구조물그룹 연구원
 *3 한국건설기술연구원 토목연구부 연구부장

