• Title/Summary/Keyword: 성능 평가

Search Result 22,402, Processing Time 0.053 seconds

DNN Model for Calculation of UV Index at The Location of User Using Solar Object Information and Sunlight Characteristics (태양객체 정보 및 태양광 특성을 이용하여 사용자 위치의 자외선 지수를 산출하는 DNN 모델)

  • Ga, Deog-hyun;Oh, Seung-Taek;Lim, Jae-Hyun
    • Journal of Internet Computing and Services
    • /
    • v.23 no.2
    • /
    • pp.29-35
    • /
    • 2022
  • UV rays have beneficial or harmful effects on the human body depending on the degree of exposure. An accurate UV information is required for proper exposure to UV rays per individual. The UV rays' information is provided by the Korea Meteorological Administration as one component of daily weather information in Korea. However, it does not provide an accurate UVI at the user's location based on the region's Ultraviolet index. Some operate measuring instrument to obtain an accurate UVI, but it would be costly and inconvenient. Studies which assumed the UVI through environmental factors such as solar radiation and amount of cloud have been introduced, but those studies also could not provide service to individual. Therefore, this paper proposes a deep learning model to calculate UVI using solar object information and sunlight characteristics to provide an accurate UVI at individual location. After selecting the factors, which were considered as highly correlated with UVI such as location and size and illuminance of sun and which were obtained through the analysis of sky images and solar characteristics data, a data set for DNN model was constructed. A DNN model that calculates the UVI was finally realized by entering the solar object information and sunlight characteristics extracted through Mask R-CNN. In consideration of the domestic UVI recommendation standards, it was possible to accurately calculate UVI within the range of MAE 0.26 compared to the standard equipment in the performance evaluation for days with UVI above and below 8.

Improvement in Mechanical Strength of α-Alumina Hollow Fiber Membrane by Introducing Nanosize γ-Alumina Particle as Sintering Agent (소결조제로 나노크기 γ-알루미나 입자의 도입에 따른 α-알루미나 중공사 분리막의 기계적 강도 향상)

  • Kim, Yong-Bin;Kim, Min-Zy;Arepalli, Devipriyanka;Cho, Churl-Hee
    • Membrane Journal
    • /
    • v.32 no.2
    • /
    • pp.150-162
    • /
    • 2022
  • In the field of water treatment and pharmaceutical bio an alumina hollow fiber membrane used for mixture separation. However, due to the lack of strengths it is very brittle to handle and apply. Therefore, it is necessary to study and improve the bending strength of the membrane to 100 MPa or more. In this study, as the mixing ratio of the nano-particles increased to 0, 1, 3, and 5 wt%, the viscosity of the fluid mixture increased. The pore structure of the hollow membrane produced by interrupting the diffusion exchange rate of the solvent and non-solvent during the spinning process suppresses the formation of the finger-like structure and gradually increases the ratio of the sponge-like structure to improve the membrane mechanical strength to more than 100 MPa. As a result, an interparticle space was ensured to improve the porosity of the sponge-like structure with high permeability, and it showed excellent N2 permeability of about 100000 GPU and high water permeability of 3000 L/m2 h. Therefore, it can be concluded, that the addition of γ-Al2O3 nanoparticles as sintering aid is an important method to enhance the mechanical strength of the α-alumina hollow fiber membrane to maintain high permeability.

Corneal Ulcer Region Detection With Semantic Segmentation Using Deep Learning

  • Im, Jinhyuk;Kim, Daewon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.1-12
    • /
    • 2022
  • Traditional methods of measuring corneal ulcers were difficult to present objective basis for diagnosis because of the subjective judgment of the medical staff through photographs taken with special equipment. In this paper, we propose a method to detect the ulcer area on a pixel basis in corneal ulcer images using a semantic segmentation model. In order to solve this problem, we performed the experiment to detect the ulcer area based on the DeepLab model which has the highest performance in semantic segmentation model. For the experiment, the training and test data were selected and the backbone network of DeepLab model which set as Xception and ResNet, respectively were evaluated and compared the performances. We used Dice similarity coefficient and IoU value as an indicator to evaluate the performances. Experimental results show that when 'crop & resized' images are added to the dataset, it segment the ulcer area with an average accuracy about 93% of Dice similarity coefficient on the DeepLab model with ResNet101 as the backbone network. This study shows that the semantic segmentation model used for object detection also has an ability to make significant results when classifying objects with irregular shapes such as corneal ulcers. Ultimately, we will perform the extension of datasets and experiment with adaptive learning methods through future studies so that they can be implemented in real medical diagnosis environment.

Improved Estimation of Hourly Surface Ozone Concentrations using Stacking Ensemble-based Spatial Interpolation (스태킹 앙상블 모델을 이용한 시간별 지상 오존 공간내삽 정확도 향상)

  • KIM, Ye-Jin;KANG, Eun-Jin;CHO, Dong-Jin;LEE, Si-Woo;IM, Jung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.3
    • /
    • pp.74-99
    • /
    • 2022
  • Surface ozone is produced by photochemical reactions of nitrogen oxides(NOx) and volatile organic compounds(VOCs) emitted from vehicles and industrial sites, adversely affecting vegetation and the human body. In South Korea, ozone is monitored in real-time at stations(i.e., point measurements), but it is difficult to monitor and analyze its continuous spatial distribution. In this study, surface ozone concentrations were interpolated to have a spatial resolution of 1.5km every hour using the stacking ensemble technique, followed by a 5-fold cross-validation. Base models for the stacking ensemble were cokriging, multi-linear regression(MLR), random forest(RF), and support vector regression(SVR), while MLR was used as the meta model, having all base model results as additional input variables. The results showed that the stacking ensemble model yielded the better performance than the individual base models, resulting in an averaged R of 0.76 and RMSE of 0.0065ppm during the study period of 2020. The surface ozone concentration distribution generated by the stacking ensemble model had a wider range with a spatial pattern similar with terrain and urbanization variables, compared to those by the base models. Not only should the proposed model be capable of producing the hourly spatial distribution of ozone, but it should also be highly applicable for calculating the daily maximum 8-hour ozone concentrations.

Small CNN-RNN Engraft Model Study for Sequence Pattern Extraction in Protein Function Prediction Problems

  • Lee, Jeung Min;Lee, Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.49-59
    • /
    • 2022
  • In this paper, we designed a new enzyme function prediction model PSCREM based on a study that compared and evaluated CNN and LSTM/GRU models, which are the most widely used deep learning models in the field of predicting functions and structures using protein sequences in 2020, under the same conditions. Sequence evolution information was used to preserve detailed patterns which would miss in CNN convolution, and the relationship information between amino acids with functional significance was extracted through overlapping RNNs. It was referenced to feature map production. The RNN family of algorithms used in small CNN-RNN models are LSTM algorithms and GRU algorithms, which are usually stacked two to three times over 100 units, but in this paper, small RNNs consisting of 10 and 20 units are overlapped. The model used the PSSM profile, which is transformed from protein sequence data. The experiment proved 86.4% the performance for the problem of predicting the main classes of enzyme number, and it was confirmed that the performance was 84.4% accurate up to the sub-sub classes of enzyme number. Thus, PSCREM better identifies unique patterns related to protein function through overlapped RNN, and Overlapped RNN is proposed as a novel methodology for protein function and structure prediction extraction.

Multi-source information integration framework using self-supervised learning-based language model (자기 지도 학습 기반의 언어 모델을 활용한 다출처 정보 통합 프레임워크)

  • Kim, Hanmin;Lee, Jeongbin;Park, Gyudong;Sohn, Mye
    • Journal of Internet Computing and Services
    • /
    • v.22 no.6
    • /
    • pp.141-150
    • /
    • 2021
  • Based on Artificial Intelligence technology, AI-enabled warfare is expected to become the main issue in the future warfare. Natural language processing technology is a core technology of AI technology, and it can significantly contribute to reducing the information burden of underrstanidng reports, information objects and intelligences written in natural language by commanders and staff. In this paper, we propose a Language model-based Multi-source Information Integration (LAMII) framework to reduce the information overload of commanders and support rapid decision-making. The proposed LAMII framework consists of the key steps of representation learning based on language models in self-supervsied way and document integration using autoencoders. In the first step, representation learning that can identify the similar relationship between two heterogeneous sentences is performed using the self-supervised learning technique. In the second step, using the learned model, documents that implies similar contents or topics from multiple sources are found and integrated. At this time, the autoencoder is used to measure the information redundancy of the sentences in order to remove the duplicate sentences. In order to prove the superiority of this paper, we conducted comparison experiments using the language models and the benchmark sets used to evaluate their performance. As a result of the experiment, it was demonstrated that the proposed LAMII framework can effectively predict the similar relationship between heterogeneous sentence compared to other language models.

Evaluation of Performance and Maintenance Cost for Roadside's Particulate Matter Reduction Devices Using Smart Green Infrastructure Technology (스마트 그린인프라 기술을 활용한 도로변 미세먼지 저감장치의 성능 및 유지·관리 비용 평가)

  • Song, Kyu-Sung;Seok, Young-Sun;Yim, Hyo-Sook;Chon, Jin-Hyung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.4
    • /
    • pp.15-31
    • /
    • 2022
  • The Green Purification Unit System (GPUS) is a green infrastructure facility applicable to the roadside to reduce particulate matter from road traffic. This study introduces two types of GPUS (type1 and type2) and assesses the performance and maintenance costs of each of them. The GPUS's performance analysis used the data collected in November 2021 after the installation of the GPUS type1 and type2 at the study site in Suwon. The changes in the particulate matter concentration near the GPUS were measured. The maintenance cost of GPUS type1 and type2 was assessed by calculating the initial installation cost and the management and repair cost after installation. The results of the performance analysis showed that the GPUS type1, which was manufactured by combining plants and electric dust collectors, had a superior particulate matter reduction performance. In particular, type1 produced a greater effect of particulate matter reduction in the time with a high concentration (50㎍/m3 or higher) of particulate matter due to the operation of electric dust collectors. GPUS type2, which was designed in the form of a plant wall without applying an electric dust collector, showed lower reduction performance than type1 but showed sufficiently improved performance compared to the existing band green area. Meanwhile, the GPUS type1 had three times higher costs for the initial installation than GPUS type2. In terms of costs for managing and repairing, it was evaluated that type1 would be slightly more costly than type2. Finally, this study discussed the applicability of two types of GPUS based on the result of the analysis of their particulate matter performance and maintenance cost at the same time. Since GPUS type2 has a cheaper cost than type1, it could be more economical. However, in the area suffering a high concentration of particulate matter, GPUS type1 would be more effective than type2. Therefore, the choice of GPUS types should rely on the status of particulate matter concentration in the area where GPUS is being installed.

Synthesis of Ni-MWCNT by pulsed laser ablation and its water splitting properties (레이저 어블레이션 공정에 의한 Ni-MWCNT 합성 및 물분해 특성)

  • Cho, Kyoungwon;Chae, Hui Ra;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.2
    • /
    • pp.77-82
    • /
    • 2022
  • Recently, research on the development of low-cost/high-efficiency water electrolysis catalysts to replace noble metal catalysts is being actively conducted. Since overvoltage reduces the overall efficiency of the water splitting device, lowering the overvoltage of the oxygen evolution reaction (OER) is the most important task in order to generate hydrogen more efficiently. Currently, noble metal catalysts show excellent characteristics in OER performance, but they are experiencing great difficulties in commercialization due to their high price and efficiency limitations due to low reactivity. In this study, a water electrolysis catalyst Ni-MWCNT was prepared by successfully doping Ni into the MWCNTs structure through the pulsed laser ablation in liquid (PLAL) process. High resolution-transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS) were performed for the structure and chemical composition of the synthesized Ni-MWCNT. Catalytic oxygen evolution reaction evaluation was performed by linear sweep voltammetry (LSV) overvoltage characteristics, Tafel slope, electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and Chronoamperometry (CA) was used for measurement.

Development of Mask-RCNN Based Axle Control Violation Detection Method for Enforcement on Overload Trucks (과적 화물차 단속을 위한 Mask-RCNN기반 축조작 검지 기술 개발)

  • Park, Hyun suk;Cho, Yong sung;Kim, Young Nam;Kim, Jin pyung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.57-66
    • /
    • 2022
  • The Road Management Administration is cracking down on overloaded vehicles by installing low-speed or high-speed WIMs at toll gates and main lines on expressways. However, in recent years, the act of intelligently evading the overloaded-vehicle control system of the Road Management Administration by illegally manipulating the variable axle of an overloaded truck is increasing. In this manipulation, when entering the overloaded-vehicle checkpoint, all axles of the vehicle are lowered to pass normally, and when driving on the main road, the variable axle of the vehicle is illegally lifted with the axle load exceeding 10 tons alarmingly. Therefore, this study developed a technology to detect the state of the variable axle of a truck driving on the road using roadside camera images. In particular, this technology formed the basis for cracking down on overloaded vehicles by lifting the variable axle after entering the checkpoint and linking the vehicle with the account information of the checkpoint. Fundamentally, in this study, the tires of the vehicle were recognized using the Mask RCNN algorithm, the recognized tires were virtually arranged before and after the checkpoint, and the height difference of the vehicle was measured from the arrangement to determine whether the variable axle was lifted after the vehicle left the checkpoint.

Falcon 9 Type Korean RLV and GTO-LV Mission Design (Falcon 9 방식의 한국형 재사용 발사체 및 정지궤도 발사체 임무설계)

  • Lee, Keum-Oh;Seo, Daeban;Lim, Byoungjik;Lee, Junseong;Park, Jaesung;Choi, Sujin;Lee, Keejoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.3
    • /
    • pp.32-42
    • /
    • 2022
  • The strategy to develop a launch vehicle family by bundling multiple rocket engines of a single type has been proven by SpaceX and their reusable fleet comprised of Falcon 9 and Falcon Heavy. In this study, we revisit a potential launch vehicle family out of a 35 tonf-class methalox staged combustion cycle engine and evaluate their utility and performance in various space missions. For example, a Korean version of Falcon 9 can deliver 4.7 tons of payload into 500 km SSO in an expendable mode while the payload is reduced to 2.16 tons in a sea-landing reusable mode. A Korean version of Falcon Heavy can deliver 4.4 tons into GTO when launched from the Naro Space Center, indicating that this common booster core configuration can handle Cheollian 2 albeit the high inclination. Once developed, the same methaloax engine can power the first-stage of smallsat launch vehicles and air launch vehicles.