1 |
Y. Yuan, M. Chao and Y. Lo, "Automatic Skin Lesion Segmentation Using Deep Fully Convolutional Networks With Jaccard Distance," IEEE Trans. on Medical Imaging, Vol. 36, No. 9, pp. 1876-1886, Sep. 2017.
DOI
|
2 |
H. Lee, F. M. Troschel, S. Tajmir, G. Fuchs, J. Mario, F. J. Fintelmann and S. Do, "Pixel-level deep segmentation: artificial intelligence quantifies muscle on computed tomography for body morphometric analysis," Journal of digital imaging, Vol. 30, No. 4, pp. 487-498. Jun. 2017.
DOI
|
3 |
M. Teichmann, M. Weber, M. Zollner, R. Cipolla and R. Urtasun, "Multinet: Real-time joint semantic reasoning for autonomous driving," 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 1013-1020, Changshu, Suzhou, China, Jun. 2018.
|
4 |
J. Long, E. Shelhamer, and T. Darrell, "Fully Convolutional Networks for Semantic Segmentation," The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431-3440, 2015.
|
5 |
Y. Chu, J. Fei and S. Hou, "Adaptive Global Sliding-Mode Control for Dynamic Systems Using Double Hidden Layer Recurrent Neural Network Structure," IEEE Trans. on Neural Networks and Learning Systems, Vol. 31, No. 4, pp. 1297-1309, Apr. 2020. DOI: 10.1109/TNNLS.2019.2919676.
DOI
|
6 |
D. Wang, D. Zhang, G. Yang, B. Xu, Y. Luo and X. Yang, "SSRNet: In-Field Counting Wheat Ears Using Multi-Stage Convolutional Neural Network," IEEE Trans. on Geoscience and Remote Sensing, Vol. 60, pp. 1-11, 2022. Art No. 4403311, DOI: 10.1109/TGRS.2021.3093041.
DOI
|
7 |
H. Noh, S. Hong, and B. Han, "Learning Deconvolution Network for Semantic Segmentation," The IEEE Conference on Computer Vision (ICCV), pp. 1520-1528, 2015.
|
8 |
Y. Tsai, W. C. Hung, S. Schulter and K. Sohn, "Learning to adapt structured output space for semantic segmentation," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7472-7481, Feb. 2018.
|
9 |
Z. Wang, and S. Sarcar, "Outline Objects using Deep Reinforcement Learning," arXiv preprint arXiv : 1804.04603, Apr. 2018.
|
10 |
S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang and P. H. S. Torr, "Conditional random fields as recurrent neural networks," Proceedings of the IEEE international conference on computer vision, pp. 1529-1537, 2015.
|
11 |
V. Iglovikov, S. Mushinskiy and V. Osin, "Satellite imagery feature detection using deep convolutional neural network: A kaggle competition," arXiv preprint arXiv:1706.06169, Jun 2017.
|
12 |
Y. Ma, J. Liu, Y. Liu, H. Fu, Y. Hu, J. Cheng, H. Qi, Y. Wu, J. Zhang, and Y. Zhao, "Structure and Illumination Constrained GAN for Medical Image Enhancement," IEEE Trans. on Medical Imaging, Vol. 40, No. 12, pp. 3955-3967, Dec. 2021. DOI: 10.1109/TMI.2021.3101937.
DOI
|
13 |
X. Du, M. El-Khamy, J. Lee and L. Davis, "Fused DNN: A deep neural network fusion approach to fast and robust pedestrian detection," 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 953-961, March 2017.
|
14 |
L. Tai, G. Paolo and M. Liu, "Virtual-to-real deep reinforcement learning: Continuous control of mobile robots for mapless navigation," IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 31-36, Sep. 2017.
|
15 |
G. Wang, W. Li, M. A. Zuluaga, R. Pratt, P. A. Patel, M. Aertsen, T. Doel, A. L. David, J. Deprest, S.Ourselin and T. Vercauteren, "Interactive Medical Image Segmentation Using Deep Learning With Image-Specific Fine Tuning," IEEE Trans. on Medical Imaging, Vol. 37, No. 7, pp. 1562-1573, Jul. 2018.
DOI
|
16 |
D. Lin, J. Dai, J. Jia, K. He and J. Sun, "ScribbleSup: Scribble-Supervised Convolutional Networks for Semantic Segmentation," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3159-3167, Apr. 2016.
|
17 |
N. A. T. Otoum, "Medical Iamge Processing : applications in ophthalmology and total hip replacement," Loughborough University, pp. 52-74, 2012.
|
18 |
T. F. Chen, and L. A. Vese, "Active Contours Without Edges," IEEE Trans. on Image Processing, Vol. 10, No. 2, pp. 266-277, Feb. 2001.
DOI
|
19 |
T. P. Patel, N. V. Prajna, S. Farsiu, N. G. Valikodath, L. M. Niziol, L. Dudeja, K. H. Kim and M. A. Woodward, "Novel Image Based Analysis for Reduction of Clinician-Dependent Varability in Measurement of the Corneal Ulcer Size," Clinical Science "Cornea", pp. 331-339, Mar. 2018.
|
20 |
Q. Sun, L. Deng, J. Liu, H. Huang, J. Yuan and X. Tang, "Patch-Based Deep Convolutional Neural Network for Corneal Ulcer Area Segmentation," Fetal, Infant and Ophthalmic Medical Image Analysis, Springer, Cham, pp. 101-108, 2017.
|
21 |
L. Chen, G. Papandreou, I. Kokkinos, K. Murphy and A. L. Yuille, "Semantic Image Segmentation With Deep Convolutional Nets and Fully Connected CRFs," arXiv preprint arXiv:1412.7062, 2014.
|
22 |
C. Chen, J. H. Chuah, R. Ali and Y. Wang, "Retinal Vessel Segmentation Using Deep Learning: A Review," IEEE Access, Vol. 9, pp. 111985-112004, 2021. DOI: 10.1109/AC CESS.2021.3102176.
DOI
|
23 |
H. Fu, Y. Xu, D. W. K. Wong and J. Liu, "Retinal Vessel Segmentation via Deep Learning Network And Fully-connected Conditional Random Fields," 2016 IEEE 13th International Symposium on Biomedical Imaging(ISBI), pp. 698-701, Apr. 2016.
|
24 |
G. Lenczner, A. Chan-Hon-Tong, B. Le Saux, N. Luminari and G. Le Besnerais, "DIAL: Deep Interactive and Active Learning for Semantic Segmentation in Remote Sensing," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 15, pp. 3376-3389, 2022. DOI: 10.1109/JSTARS.2022.3166551.
DOI
|
25 |
C. Peng, K. Zhang, Y. Ma and J. Ma, "Cross Fusion Net: A Fast Semantic Segmentation Network for Small-Scale Semantic Information Capturing in Aerial Scenes," IEEE Trans. on Geoscience and Remote Sensing, Vol. 60, pp. 1-13, 2022. Art no. 5601313, DOI: 10.1109/TGRS.2021.305 3062.
DOI
|
26 |
F. Yu, and V. Koltun, "Multi-Scale Context Aggregation By Dilated Convolutions," IEEE Trans. on Parallel and Distributed Systems, Vol. 16, No. 3, pp. 219-232, Mar. 2005.
DOI
|
27 |
Y. -J. Ma, H. -H. Shuai and W. -H. Cheng, "Spatiotemporal Dilated Convolution With Uncertain Matching for Video-Based Crowd Estimation," IEEE Trans. on Multimedia, Vol. 24, pp. 261-273, 2022. DOI: 10.1109/TMM.2021.3050059.
DOI
|