• Title/Summary/Keyword: 성능함수

Search Result 3,334, Processing Time 0.027 seconds

The Edge Detector Using Wavelet Transform developed for Heavy Noised Images. (심한 잡음성 영상의 경계선 검출을 위한 웨이블릿 변환 이용 검출기 개발)

  • 이혜성;변혜란;유지상
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.464-466
    • /
    • 1998
  • 경계선 검출은 시각 인식 또는 기계 시각 인식의 과정에서 제일 먼저 수행되는 전처리 단계이다. 경계선 검출은 컴퓨터 시각 인식성능에 매우 중대한 요인으로 작용한다. 최근 MPEG-4에서 Model Based Coding 기법이 채택되면서, 경계선 검출 및 이를 이용한 컴퓨터 시각 인식의 중요성은 날로 커지고 있다. 한편, 잡음이 있는 영상의 경계선 검출 방법으로 여러 가지가 제시되었는데, 특히 잡음의 종류가 Additive White Gaussian인 경우에는 Canny Edge Detector가, Impulse인 경우에는 Dual Stack Filter를 적용한 방법이 각각 높은 성능으로 인정을 받고 있다. 그러나 Canny Edge Detector의 경우, Canny는 이론적인 Optimal Filter를 구하는 데에 성공하였지만 실제 적용에는, 이 Optimal Filter의 근사로써 Gauss함수의 1계 도함수를 사용하였다. 본 연구에서는 Gauss함수보다는 상당히 Optimal Filter와 가까운 Filter를 얻기 위하여 웨이블릿 변환을 사용한 Liao등의 방법과, 각기 다른 Scale에서의 웨이블릿 변환들이 가지는 잡음과의 관계를 고려한 새로운 경계선 검출방법을 개발하였다. 실험결과, 본 연구에서의 방법은 기존에 사용되던 Canny Edge Detector나 Stochastic Operator보다 뛰어난 성능을 보여주었다.

  • PDF

A Neuro Fuzzy Controller Using Auto-tuning Width of Membership Function for Equipment Systems (설비시스템을 위한 소속함수 폭의 자동동조를 사용한 뉴로퍼지 제어기)

  • 이수흠;방근태
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.2
    • /
    • pp.102-109
    • /
    • 1997
  • The width of fuzzy membership function and control rule has an effect on performance of the fuzzy controller for electric equipment systems. In this paper, the neuro-fuzzy controller is proposed to im¬prove the performance of fuzzy controller. It has the width of membership function, that is adapted to the electrical parameter using multi-layer neural network, it is applied to first order electric power system with dead time and various plant constant. The related simulation resolts show that the pro¬posed neuro fuzzy controller are superior characteristics of improved performance

  • PDF

Independent Component Analysis of Fixed Point Learning Algorithm Based on Secant Method (할선법에 기초한 고정점 학습알고리즘의 독립성분분석)

  • 조용현;박용수
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05c
    • /
    • pp.336-341
    • /
    • 2002
  • 본 연구에서는 엔트로피 최적화를 위한 목적함수의 근을 구하기 위해 단순히 함수 값만을 이용하여 계산을 근사화한 할선법에 기초한 고정점 알고리즘의 독립성분분석 기법을 제안하였다. 이렇게 하면 기존의 뉴우턴법에 기초한 고정점 알고리즘에서 요구되는 복잡한 도함수의 계산과정을 간략화 할 수 있어 더 우수한 학습성능의 독립성분분석이 가능하다. 제안된 학습알고리즘의 독립성분분석 기법을 512$\times$512의 픽셀을 가지는 10개의 영상을 대상으로 임의의 혼합행렬에 따라 발생되는 혼합영상들을 실험하였다. 실험결과, 기존의 뉴우턴법에 기초한 고정점 알고리즘의 분석기법보다 빠른 학습속도와 개선된 분리성능이 있음을 확인하였다. 특히 기존의 알고리즘에서 임의로 설정되는 초기값에 덜 의존하는 학습성능이 있음도 확인할 수 있었다.

  • PDF

Robust Optimization Using Supremum of the Objective Function for Nonlinear Programming Problems (비선형계획법에서 목적함수의 상한함수를 이용한 강건최적설계)

  • Lee, Se Jung;Park, Gyung Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.535-543
    • /
    • 2014
  • In the robust optimization field, the robustness of the objective function emphasizes an insensitive design. In general, the robustness of the objective function can be achieved by reducing the change of the objective function with respect to the variation of the design variables and parameters. However, in conventional methods, when an insensitive design is emphasized, the performance of the objective function can be deteriorated. Besides, if the numbers of the design variables are increased, the numerical cost is quite high in robust optimization for nonlinear programming problems. In this research, the robustness index for the objective function and a process of robust optimization are proposed. Moreover, a method using the supremum of linearized functions is also proposed to reduce the computational cost. Mathematical examples are solved for the verification of the proposed method and the results are compared with those from the conventional methods. The proposed approach improves the performance of the objective function and its efficiency.

An Unambiguous Correlation Function to Improve Tracking Performance for Binary Offset Carrier Signals (이진 옵셋 반송파 신호 추적 성능 향상을 위한 비모호 상관함수)

  • Woo, Sunghyuk;Chae, Keunhong;Lee, Seong Ro;Yoon, Seokho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1433-1440
    • /
    • 2015
  • In this paper, we propose an unambiguous correlation function to improve tracking performance for binary offset carrier (BOC) signals. Specifically, we divide a BOC sub-carrier into multiple rectangular pulses, and analyze that the BOC autocorrelation function is made up of the sum of several partial correlation functions. Then, we obtain two sub-correlation functions by combining two partial correlation functions and propose a novel unambiguous correlation function with no side-peak which can be regulated its width based on the combination of the sub-correlation functions and partial correlation functions. From numerical results, it is confirmed that the proposed correlation function provides a tracking performance improvement over the conventional correlation functions in terms of the tracking error standard deviation.

Alleviation of Vanishing Gradient Problem Using Parametric Activation Functions (파라메트릭 활성함수를 이용한 기울기 소실 문제의 완화)

  • Ko, Young Min;Ko, Sun Woo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.10
    • /
    • pp.407-420
    • /
    • 2021
  • Deep neural networks are widely used to solve various problems. However, the deep neural network with a deep hidden layer frequently has a vanishing gradient or exploding gradient problem, which is a major obstacle to learning the deep neural network. In this paper, we propose a parametric activation function to alleviate the vanishing gradient problem that can be caused by nonlinear activation function. The proposed parametric activation function can be obtained by applying a parameter that can convert the scale and location of the activation function according to the characteristics of the input data, and the loss function can be minimized without limiting the derivative of the activation function through the backpropagation process. Through the XOR problem with 10 hidden layers and the MNIST classification problem with 8 hidden layers, the performance of the original nonlinear and parametric activation functions was compared, and it was confirmed that the proposed parametric activation function has superior performance in alleviating the vanishing gradient.

Performance Evaluation of YOLOv5 Model according to Various Hyper-parameters in Nuclear Medicine Phantom Images (핵의학 팬텀 영상에서 초매개변수 변화에 따른 YOLOv5 모델의 성능평가)

  • Min-Gwan Lee;Chanrok Park
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.1
    • /
    • pp.21-26
    • /
    • 2024
  • The one of the famous deep learning models for object detection task is you only look once version 5 (YOLOv5) framework based on the one stage architecture. In addition, YOLOv5 model indicated high performance for accurate lesion detection using the bottleneck CSP layer and skip connection function. The purpose of this study was to evaluate the performance of YOLOv5 framework according to various hyperparameters in position emission tomogrpahy (PET) phantom images. The dataset was obtained from QIN PET segmentation challenge in 500 slices. We set the bounding box to generate ground truth dataset using labelImg software. The hyperparameters for network train were applied by changing optimization function (SDG, Adam, and AdamW), activation function (SiLU, LeakyRelu, Mish, and Hardwish), and YOLOv5 model size (nano, small, large, and xlarge). The intersection over union (IOU) method was used for performance evaluation. As a results, the condition of outstanding performance is to apply AdamW, Hardwish, and nano size for optimization function, activation function and model version, respectively. In conclusion, we confirmed the usefulness of YOLOv5 network for object detection performance in nuclear medicine images.

Comparative analysis of activation functions of artificial neural network for prediction of optimal groundwater level in the middle mountainous area of Pyoseon watershed in Jeju Island (제주도 표선유역 중산간지역의 최적 지하수위 예측을 위한 인공신경망의 활성화함수 비교분석)

  • Shin, Mun-Ju;Kim, Jin-Woo;Moon, Duk-Chul;Lee, Jeong-Han;Kang, Kyung Goo
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1143-1154
    • /
    • 2021
  • The selection of activation function has a great influence on the groundwater level prediction performance of artificial neural network (ANN) model. In this study, five activation functions were applied to ANN model for two groundwater level observation wells in the middle mountainous area of the Pyoseon watershed in Jeju Island. The results of the prediction of the groundwater level were compared and analyzed, and the optimal activation function was derived. In addition, the results of LSTM model, which is a widely used recurrent neural network model, were compared and analyzed with the results of the ANN models with each activation function. As a result, ELU and Leaky ReLU functions were derived as the optimal activation functions for the prediction of the groundwater level for observation well with relatively large fluctuations in groundwater level and for observation well with relatively small fluctuations, respectively. On the other hand, sigmoid function had the lowest predictive performance among the five activation functions for training period, and produced inappropriate results in peak and lowest groundwater level prediction. The ANN-ELU and ANN-Leaky ReLU models showed groundwater level prediction performance comparable to that of the LSTM model, and thus had sufficient potential for application. The methods and results of this study can be usefully used in other studies.

Performance of Multiuser Detector Based on Radial Basis Function for DS-CDMA Power Line Communication Systems (DS-CDMA 기반 전력선 통신 시스템을 위한 방사형 기저 함수를 이용하는 다중 사용자 검출기의 성능)

  • Hwang, Yu Min;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.1
    • /
    • pp.1-5
    • /
    • 2017
  • In this paper, multiuser detector (MUD) based on radial basis function (RBF) is proposed and simulated for a multicode direct sequence/code division multiple access (DS/CDMA) system in a multipath fading channel. The performance of RBF-based MUD is compared with that of many suboptimal multiuser detectors in terms of bit error probability. From the simulation results, it is confirmed that the RBF-based MUD outperforms decorrelating detector, and achieves near-optimum performance under various environments. The results in this paper can be applied to design of MUD for a multicode DS/CDMA system.

Median HRIR Customization via Principal Components Analysis (주성분 분석을 이용한 HRIR 맞춤 기법)

  • Hwang, Sung-Mok;Park, Young-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.638-648
    • /
    • 2007
  • A principal components analysis of the entire median HRIRs in the CIPIC HRTF database reveals that the individual HRIRs can be adequately reconstructed by a linear combination of several orthonormal basis functions. The basis functions represent the inter-individual and inter-elevation variations in median HRIRs. There exist elevation-dependent tendencies in the weights of basis functions, and the basis functions can be ordered according to the magnitude of standard deviation of the weights at each elevation. We propose a HRIR customization method via tuning of the weights of 3 dominant basis functions corresponding to the 3 largest standard deviations at each elevation. Subjective listening test results show that both front-back reversal and vertical perception can be improved with the customized HRIRs.