• Title/Summary/Keyword: 성능에 기초한 내진설계

Search Result 113, Processing Time 0.034 seconds

Introduction and Necessity of concept of Demand for Performance-Based Design (성능기반설계에서의 요구성능의 개념 정의 및 필요성)

  • Lee, Byung-Goog;Park, Tae-Hyo;Lee, Sang-Youl
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.125-128
    • /
    • 2008
  • Studies for structure design has conducted in many research institutions. A basic concept of Performance-Based Design for structures was presented in seismic fields. Hereafter, Demand were defined to communicate owner's demand to designer by several research institution. Performance-Based Design is guaranteed by an accurate analysis from hazard affected to structures and from social, economical and environmental effects. It is essential to define Performance Level and Performance Objective to grasp accurate demand for structures. In this study, Performance Level and Performance Objective in ATC-40, FEMA-273 and Eurocode were defined to introduce Performance-Based Design.

  • PDF

Seismic Performance and Flexural Over-strength of Hollow Circular RC Column with Longitudinal Steel Ratio 2.017% (축방향철근비 2.017%인 중공 원형 RC 기둥의 내진성능과 휨 초과강도)

  • Ko, Seong-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Three small scale hollow circular reinforced concrete columns with aspect ratio 4.5 were tested under cyclic lateral load with constant axial load. Diameter of section is 400 mm, hollow diameter is 200 mm. The selected test variable is transverse steel ratio. Volumetric ratios of spirals of all the columns are 0.302~0.604% in the plastic hinge region. It corresponds to 45.9~91.8% of the minimum requirement of confining steel by Korean Bridge Design Specifications, which represent existing columns not designed by the current seismic design specifications or designed by seismic concept. The longitudinal steel ratio is 2.017%. The axial load ratio is 7%. This paper describes mainly crack behavior, load-displacement hysteresis loop, seismic performance such as equivalent damping ratio, residual displacement and effective stiffness and flexural over-strength of circular reinforced concrete bridge columns with respect to test variable. The regulation of flexural over-strength is adopted by Korea Bridge Design Specifications (Limited state design, 2012). The test results are compared with nominal strength, result of nonlinear moment-curvature analysis and the design specifications such as AASHTO LRFD and Korea Bridge Design Specifications(Limited state design).

Behavior of Solid and Hollow Rectangular RC Piers with 50% of Lap-Spliced Longitudinal Bars (50%주철근 겹침이음을 갖는 중실 및 중공 사각단면 교각의 거동특성)

  • 김익현;이종석;이윤복;김원섭;선창호
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.25-35
    • /
    • 2003
  • Scale model tests were performed to investigate the seismic behavior of the solid and hollow rectangular RC piers with 50% of lap-spliced longitudinal bars in plastic hinge regions. Continuous bars and lap-spliced ones with a lap length of 39 times the bar diameter were arranged alternately in the sections. In order to clarify the influence of lap splice on a ductility the effect of axial force and lateral confinement were excluded in the test. The typical flexural failure conducting a ductile behavior were observed in both models. It is confirmed that the 50% of lap-spliced bars can be considered as an alternative of seismic detailing for longitudinal bars.

Ductility Confinement of RC Rectangular Shear Wall (장방형 철근 콘크리트 전단벽의 연성 보강)

  • 강수민;박홍근
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.530-539
    • /
    • 2002
  • In designing the boundary confinement of shear walls, the current design provisions and recommendations are empirical and prescriptive; they specify a certain confinement length and details, regardless of the actual requirement of ductility Therefore, they are inappropriate to the performance based-design. The purpose of the present study is to develop a ductility design method that Is applicable to the performance based-design of shear wall. For the purpose, experimental studies were performed to investigate variations in the ductility of shear walls with the length of the boundary confinement. Five specimens modeling the compressive zone of cross sections with different confinement area were tested against eccentric vertical load. Through the experimental studies, strength, ductility, and failure mode of the compression zone were investigated. In addition, nonlinear numerical analyses for the overall cross-sections of shear wall were performed to investigate variations of the stress and strain profiles with the length of compression zone. On the basis of the experimental and numerical studies, a ductility design method for shear wall was developed. By using the proposed design method, for a given ductility demand, the area of lateral confinement and corresponding reinforcement ratio can be precisely determined so that the ductile behavior and economical design are assured.

Nonlinear Behavior of Seismic-Strengthened Domestic School Building (국내 기존 학교건축물의 내진보강 후 비선형 거동특성)

  • Ryu, Seung Hyun;Yun, Hyun Do;Kim, Sun Woo;Lee, Kang Seok;Kim, Yong Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.243-253
    • /
    • 2011
  • This paper describes an analytical study on seismic performance of domestic reinforced concrete (RC) school building not designed by seismic provision. The seismic index and the seismic performance of the building were evaluated through Japanese standard and Midas Gen, respectively. Seismic index (Is) of the RC school buildings in the X-direction is below 0.4. Based on the seismic index, for seismic-strengthening the building, infill shear wall or steel brace with a capacity of 1,300 kN was used. According to nonlinear static analysis results, the contribution of the seismic-strengthening to the shear resistance of the school building was measured to be greater than 30%. However, as expected, shear strength of school building strengthened with infill wall dropt rapidly after peak load and much narrower ductile behavior range was observed compared to steel brace strengthened building. Also, the building strengthened with steel brace showed 30% larger spectral displacement than that strengthened with infill shear wall. In nonlinear dynamic analysis, for the time history analysis, the maximum displacement showed tendency to decrease as amount of reinforcement increased, regardless of strengthening method. It was recommended that variable soil properties and earthquake record should be considered for improving seismic performance of buildings in seismic zone.

Seismic Fragility Analysis of PSC Containment Building by Nonlinear Analysis (비선형 지진해석에 의한 PSC 격납건물의 지진취약도 분석)

  • Choi, In-Kil;Ahn, Seong-Moon;Choun, Young-Sun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.1 s.47
    • /
    • pp.63-74
    • /
    • 2006
  • The seismic fragility analysis method has been used as a quantitative seismic safety evaluation method for the NPP(Nuclear Power Plant) structures and equipments. The seismic fragility analysis gives a realistic seismic capacity excluding the convertism included in the design stage. The conservatism is considered as the probabilistic parameters related to the response and capacity in the seismic fragility analysis. In this study, the displacement based seismic fragility analysis method was proposed based on the nonlinear dynamic analysis results. In this study, the seismic safety of the prestressed concrete containment building of KSNP(Korean Standard Nuclear Power Plant) was evaluated for the scenario earthquakes, neat-fault, far-fault, design earthquake and probability based scenario earthquake, which can be occurred in the NPP sites.

Towards New Generation of Seismic Design Methodologies for Performance-based Design (성능기초설계를 위한 차세대 내진설계의 방향)

  • 홍성걸;김남희;장승필
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.276-283
    • /
    • 2001
  • Performance-based design concepts require the next generation of codes. To implement the main concepts several design methodologies have been proposed. This paper reviews the framework of Korea Seismic Code and shows necessary modification for adoption of appropriate design methods. The selection of design earthquake levels with the introduction of risk factor is discussed for proper risk levels for all earthquake hazards. Displacement-based design, energy-based design, comprehensive design, and force-strength design methods are reviewed as one of possible next generation design methods. This paper proposes the direction of reconstruction for design earthquake levels with performance matrix, introduction of new design methods, and emphasis on non- structural components.

  • PDF

Numerical Study on the Estimation of Surface Constrained Pressure for Ductile Behavior of RC Columns (RC 기둥의 연성거동을 위한 표면구속응력 산정에 관한 해석적 연구)

  • Kim, Kyeong-Min;Lee, Su-Young;Kim, Geon-Woo;Kwon, MinHo;Kim, JinSup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.3
    • /
    • pp.48-56
    • /
    • 2021
  • Due to the recent earthquake that has occurred worldwide, interest in seismic reinforcement of structures is increasing. In order to improve the seismic performance of the structure, the seismic reinforcement of the column should be made. Various seismic retrofit methods are being developed to improve the seismic performance of columns. In this study, in order to improve the seismic performance of RC columns, an numerical study was conducted to evaluate the seismic performance of the columns by applying a surface constrained pressure. For the numerical study, the experimental study on the column was used, and the failure shape and behavior characteristics of the experimental results and the numerical results were compared. As a result of the numerical study, the ductile behavior of the RC columns occurred according to the strength of the surface constraining stress. In addition, ductile behavior occurred almost constant above a certain surface constrained pressure. Compared with the numerical results and the experimental results, he reinforcing effect of the used seismic reinforcement of the column in experimental study was compared with the value of the surface constrained pressure for the RC column, and the seismic reinforcing effect was examined as the surface constrained pressure value for the RC column. In conclusion, in this work, surface constrained stress and constrained strength for ductile behavior of RC columns are derived. Based on the results derived, it is believed that it can be used as basic data on the review of seismic design methods and seismic performance complementary effects using ductile behavior induction of RC columns.

A Numerical Study on Improvement in Seismic Performance of Nuclear Components by Applying Dynamic Absorber (동흡진기 적용을 통한 원전기기의 내진성능향상에 관한 수치적 연구)

  • Kwag, Shinyoung;Kwak, Jinsung;Lee, Hwanho;Oh, Jinho;Koo, Gyeong-Hoi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.1
    • /
    • pp.17-27
    • /
    • 2019
  • In this paper, we study the applicability of Tuned Mass Damper(TMD) to improve seismic performance of piping system under earthquake loading. For this purpose, a mode analysis of the target pipeline is performed, and TMD installation locations are selected as important modes with relatively large mass participation ratio in each direction. In order to design the TMD at selected positions, each corresponding mode is replaced with a SDOF damped model, and accordingly the corresponding pipeline is converted into a 2-DOF system by considering the TMD as a SDOF damped model. Then, optimal design values of the TMD, which can minimize the dynamic amplification factor of the transformed 2-DOF system, are derived through GA optimization method. The proposed TMD design values are applied to the pipeline numerical model to analyze seismic performance with and without TMD installation. As a result of numerical analyses, it is confirmed that the directional acceleration responses, the maximum normal stresses and directional reaction forces of the pipeline system are reduced, quite a lot. The results of this study are expected to be used as basic information with respect to the improvement of the seismic performance of the piping system in the future.

Flexural Overstrength of Reinforced Concrete Bridge Columns for Capacity Design (철근콘크리트 교각의 성능보장설계를 위한 휨 초과강도)

  • Lee, Jae-Hoon;Ko, Seong-Hyun;Choi, Jin-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.5 s.51
    • /
    • pp.85-97
    • /
    • 2006
  • Capacity design is to guarantee ductile failure of whole bridge system by preventing brittle failure of columns and any other structural elements until the columns develope fully enough plastic deformation capacity. This concept has been explicitly regulated in most bridge design specifications of foreign countries except the current Korea Bridge Design Specifications. In the capacity design, the transformed shear force from flexural overstrength of reinforced concrete column is used as the design lateral shear force for shear design of columns and design of footings and piles. Different calculating methods are adopted by the design specifications, since the variability of material strength and construction circumstances of the local regions should be considered. This paper proposed material overstrength factors by investigating 3,407 reinforcing bar data and 5,405 concrete compressive strength data collected in Korean construction sites. It also proposed calculating procedures for flexural overstrength of reinforced concrete columns using the material overstrength. Finally, overstrength factor was proposed as 1.5 by investigating 1,500 column section data from moment-curvature analysis using the material overstrength.