• Title/Summary/Keyword: 성능기반 설계

Search Result 4,277, Processing Time 0.037 seconds

Development of Forward chaining inference engine SMART-F using Rete Algorithm in the Semantic Web (차세대 웹 환경에서의 Rete Algorithm을 이용한 정방향 추론엔진 SMART - F 개발)

  • Jeong, Kyun-Beom;Hong, June-Seok;Kim, Woo-Ju;Lee, Myung-Jin;Park, Ji-Hyoung;Song, Yong-Uk
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.3
    • /
    • pp.17-29
    • /
    • 2007
  • Inference engine that performs the brain of software agent in next generation's web with various standards based on standard language of the web, XML has to understand SWRL (Semantic Web Rule Language) that is a language to express the rule in the Semantic Web. In this research, we want to develop a forward inference engine, SMART-F (SeMantic web Agent Reasoning Tools-Forward chaining inference engine) that uses SWRL as a rule express method, and OWL as a fact express method. In the traditional inference field, the Rete algorithm that improves effectiveness of forward rule inference by converting if-then rules to network structure is often used for forward inference. To apply this to the Semantic Web, we analyze the required functions for the SWRL-based forward inference, and design the forward inference algorithm that reflects required functions of next generation's Semantic Web deducted by Rete algorithm. And then, to secure each platform's independence and portability in the ubiquitous environment and overcome the gap of performance, we developed management tool of fact and rule base and forward inference engine. This is compatible with fact and rule base of SMART-B that was developed. So, this maximizes a practical use of knowledge in the next generation's Web environment.

  • PDF

Design and Implementation of Crash Recovery Technique with Bounded Execution Time for NAND Flash File System (낸드 플래시 파일 시스템을 위한 결함 복구 시간 제한 기법의 설계 및 구현)

  • Kang, Seung-Yup;Park, Hyun-Chan;Kim, Ki-Man;Yoo, Chuck
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.6
    • /
    • pp.330-338
    • /
    • 2010
  • Flash storage devices are very popularly used in portable devices such as cell phones, PDAs and MP3 players. As technology is improved, users want much bigger and faster storage system. Paradoxically, people have to wait more and more time proportionally to the capacity of their storage devices when these are trying to be recovered after file system crash. It is serious problem because booting time of devices is dominated by crash recovery of flash file system. In this paper, we design a crash recovery mechanism, named 'Working Area(WA hereafter)' technique, which has bounded crash recovery execution time. With WA technique, write operations to flash memory are only performed in WA. Therefore, by simply scanning the latest WA. We can recover a file system crash because every change for flash memory is occured only in latest WA. We implement the WA technique based on YAFFS2 and evaluate by comparing with traditional techniques. As a result, WA technique shows that its crash recovery execution time is 25 times faster than Log-based Method when we use 1 gig a bytes NAND flash memory in worst case. This gap will be futher and futher as storage capacity grows.

Design and Implementation of Unified Index for Moving Objects Databases (이동체 데이타베이스를 위한 통합 색인의 설계 및 구현)

  • Park Jae-Kwan;An Kyung-Hwan;Jung Ji-Won;Hong Bong-Hee
    • Journal of KIISE:Databases
    • /
    • v.33 no.3
    • /
    • pp.271-281
    • /
    • 2006
  • Recently the need for Location-Based Service (LBS) has increased due to the development and widespread use of the mobile devices (e.g., PDAs, cellular phones, labtop computers, GPS, and RFID etc). The core technology of LBS is a moving-objects database that stores and manages the positions of moving objects. To search for information quickly, the database needs to contain an index that supports both real-time position tracking and management of large numbers of updates. As a result, the index requires a structure operating in the main memory for real-time processing and requires a technique to migrate part of the index from the main memory to disk storage (or from disk storage to the main memory) to manage large volumes of data. To satisfy these requirements, this paper suggests a unified index scheme unifying the main memory and the disk as well as migration policies for migrating part of the index from the memory to the disk during a restriction in memory space. Migration policy determines a group of nodes, called the migration subtree, and migrates the group as a unit to reduce disk I/O. This method takes advantage of bulk operations and dynamic clustering. The unified index is created by applying various migration policies. This paper measures and compares the performance of the migration policies using experimental evaluation.

Efficient Schemes for Scaling Ring Bandwidth in Ring-based Multiprocessor System (링 구조 다중프로세서 시스템에서 링 대역폭 확장을 위한 효율적인 방안)

  • Jang, Byoung-Soon;Chung, Sung-Woo;Jhang, Seong-Tae;Jhon, Chu-Shik
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.2
    • /
    • pp.177-187
    • /
    • 2000
  • In the past several years, many systems which adopted ring topology with high-speed unidirectional point-to-point links have emerged to overcome the limit of bus for interconnection network of clustered multiprocessor system. However, rapid increase of processor speed and performance improvement of local bus and memory system limit scalability of system with point-to-point link of standard bandwidth. Therefore, necessity to extend bandwidth is emphasized. In this paper, we adopt PANDA system as base model, which is clustering-based multiprocessor system. By simulating a model adopting commercial processor and local bus specification, we show that point-to-point link is bottleneck of system performance, and bandwidth expansion by more than 200% is needed. To expand bandwidth of interconnection network, it needs excessive design cost and time to develop new point-to-point link with doubled bandwidth. As an alternative to double bandwidth, we propose several ways to implement dual ring -simple dual ring, transaction-separated dual ring, direction-separated dual ring- by using off-the-shelf point-to-point links with IEEE standard bandwidth. We analyze pros. and cons. of each model compared with doubled-bandwidth single ring by simulation.

  • PDF

A Development of 3D Modeling-based Survivability Analysis System for Armored Fighting Vehicle using Importance of Components (부품의 중요도를 활용한 3차원 전차 모델 기반 생존성 분석 시스템 개발)

  • Hwang, Hun-Gyu;Lee, Jae-Wook;Lee, Jae-Woong;Lee, Jang-Se
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1269-1276
    • /
    • 2015
  • The mission capability of tank depends on its survivability. The survivability is ability for protection and tolerance by damage from threats. To improve the survivability of tank, we need an effectiveness analysis for loss of components, and accomplish performance enhancement using the result of analysis. In this paper, we develop a survivability analysis system for tank based on the importance. The importance numerically represents weight of each component which consisting of whole tank, also the importance is basic method of quantitative survivability analysis. To do this, we assign weight values to each component of tank, compose a weight tree, apply the importance calculation equation, and analyze the survivability of tank. Also we develop the system that consists of component structuralization and weight value setting program and survivability analysis and visualization program, and evaluate the system using implemented 3D CAD models of components of tank. The developed system apply to arrangement components.

Development of All-in-one Attachment Based Steel Pipe Pile Cutting Robot Prototype (강관말뚝 두부정리 및 절단 부위 핸들링 로봇의 프로토타입 개발)

  • Yeom, Dong Jun;Han, Jae Hyun;Jung, Eui Hyun;Kim, Young Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.6
    • /
    • pp.115-123
    • /
    • 2018
  • The primary objective of this study is to develop an all-in-one based steel pipe pile cutting robot prototype that improves the conventional steel pipe pile head cutting work in safety, quality, and productivity. For this, the following research works are conducted sequentially; 1)literature review and expert survey, 2)selection of core technology using AHP analysis, 3)deduction of detail design, 4)verification of structural stability, 5)development of full-scale prototype. As a result leveling laser and laser detector(94.46), plasma cutter(96.72), rotary grapple(98.45) are selected as a core technologies. As an outcome, it is analyzed that gripper, cylinder pivot bracket and gripper base are structurally stable. Their maximum stresses are shown as 43.0%, 19.4%, 5.3% compared to their yield strength respectively. The development of full-scale prototype in this study will be utilized for the development of the all-in-one attachment based steel pipe pile cutting robot commercialization model.

An Intelligent Service Middleware Using Ontology and Rule in Ubiquitous Sensor Network Environments (유비쿼터스 센서 네트워크 환경에서 온톨로지와 규칙을 이용한 지능형 서비스 미들웨어)

  • Park, Jong-Hyun;Kang, Ji-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.10
    • /
    • pp.147-156
    • /
    • 2010
  • There are some of the studies on sensor middleware. However the standard middleware has not yet been defined. Especially, this paper focuses on the processing an intelligent service of the main functions of middleware. Several applications in the sensor network environment support not only monitoring services, but also sensor-based context-awareness and intelligent services based on sensors. However, the previous studies about USN middleware only mentioned the need for intelligent service and did not discuss the architecture and method for supporting the intelligent service in detail. Therefore this paper designs a USN middleware for providing intelligent services and proposes the method for processing the services. For this purpose, this paper proposes the Sensor-Service ontology to define the concept of services and sensors for USN applications and the relationship between them. The Sensor-Service ontology is used to infer high-level information from low-level information. To apply a variety of environmental context to intelligent services, the paper uses the rule-based reasoning. This paper implements the proposed intelligent service middleware as a prototype and then shows that the middleware can be used for a variety of USN applications through the performance evaluation.

Design of a computationally efficient frame synchronization scheme for wireless LAN systems (무선랜 시스템을 위한 계산이 간단한 초기 동기부 설계)

  • Cho, Jun-Beom;Lee, Jong-Hyup;Han, Jin_Woo;You, Yeon-Sang;Oh, Hyok-Jun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.64-72
    • /
    • 2012
  • Synchronization including timing recovery, frequency offset compensation, and frame synchronization is most important signal processing block in all wireless/wired communication systems. In most communication systems, synchronization schemes based on training sequences or preambles are used. WLAN standards of 802.11a/g/n released by IEEE are based on OFDM systems. OFDM systems are known to be much more sensitive to frequency and timing synchronization errors than single carrier systems. A loss of orthogonality between the multiplexed subcarriers can result in severe performance degradations. The starting position of the frame and the beginning of the symbol and training symbol can be estimated using correlation methods. Correlation processing functionality is usually complex because of large number of multipliers in implementation especially when the reference signal is non-binary. In this paper, a simple correlation based synchronization scheme is proposed for IEEE 802.11a/g/n systems. Existing property of a periodicity in the training symbols are exploited. Simulation and implementation results show that the proposed method has much smaller complexity without any performance degradation than the existing schemes.

A numerical study on the optimum spacing of disc cutters considering rock strength and penetration depth using discrete element method (암반강도 및 압입깊이에 따른 디스크커터의 최적간격 산정을 위한 개별요소법 기반 수치해석 연구)

  • Lee, Sang Yun;Song, Ki-il;Jung, Ju Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.383-399
    • /
    • 2020
  • Optimizing the spacing of the disc cutter is a key element in the design of the TBM cutter head, which determines the drilling performance of the TBM. The full-scale linear cutting test is known as the most reliable and accurate test for calculating the spacing of the disc cutter, but it has the disadvantage of costly and time-consuming for the full-scale experiment. In this study, through the numerical analysis study based on the discrete element method, the tendency between Specific Energy-S/P ratio according to uniaxial compression strength and penetration depth of rock was analyzed, and the optimum spacing of 17-inch disc cutter was derived. To examine the appropriateness of the numerical analysis model, the rolling force acting on the disc cutter was compared and reviewed with the CSM model. As a result of numerical analysis for the linear cutting test, the rolling force acting on the disc cutter was analyzed to be similar to the rolling force derived from the theoretical formula of the CSM model. From the numerical analysis on 5 UCS cases (50 MPa, 70 MPa, 100 MPa, 150 MPa, 200 MPa), it is found that the range of the optimum spacing of the disc cutter decreases as the rock strength increases. And it can be concluded that 80~100 mm of disc cutter spacing is the optimum range having minimum specific energy regardless of rock strength. This tends to coincide with the optimal spacing of previously reported disk cutters, which underpins the disk cutter spacing calculated through this study.

The Model of Network Packet Analysis based on Big Data (빅 데이터 기반의 네트워크 패킷 분석 모델)

  • Choi, Bomin;Kong, Jong-Hwan;Han, Myung-Mook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.392-399
    • /
    • 2013
  • Due to the development of IT technology and the information age, a dependency of the network over the most of our lives have grown to a greater extent. Although it provides us to get various useful information and service, it also has negative effectiveness that can provide network intruder with vulnerable roots. In other words, we need to urgently cope with theses serious security problem causing service disableness or system connected to network obstacle with exploiting various packet information. Many experts in a field of security are making an effort to develop the various security solutions to respond against these threats, but existing solutions have a lot of problems such as lack of storage capacity and performance degradation along with the massive increase of packet data volume. Therefore we propose the packet analysis model to apply issuing Big Data technology in the field of security. That is, we used NoSQL which is technology of massive data storage to collect the packet data growing massive and implemented the packet analysis model based on K-means clustering using MapReudce which is distributed programming framework, and then we have shown its high performance by experimenting.