• Title/Summary/Keyword: 섭동법

Search Result 168, Processing Time 0.028 seconds

A Method for Vibration and Sensitivity Analysis of Structure Systems with Non-linear Characteristics (비선형 특성을 가진 구조시스템의 진동과 감도해석 방법)

  • Moon, Byung-Young;Kim, Sa-Soo;Iwatsubo, Takuzo
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.10-18
    • /
    • 1999
  • 본 논문에서는 대형구조물의 해석에 있어서 부분구조합성법과 섭동법을 이용하여 복잡한 비선형시스템의 해석방법을 제안하였다. 해석방법은 전체시스템을 먼저 몇 개의 분계로 분할한다. 각 분계의 운동방정식에 비선형항이 존재하여도 전체시스템의 지배적 진동모드는 선형모드라는 가정하에 이 시스템의 각 분계를 모드좌표로 변환한다. 이때, 비선형항은 근사적으로 변환한다. 그리고 섭동법을 이용하여 각 분계의 모드좌표방정식은 섭동좌수별로 정식화되어 순차적으로 구해진다. 비선형의 감도는 비선형계수로 정의되고, 그에 상응하는 강성에 의해 구해진다. 제안된 해석방법으로 비선형회전체, 비선형 베어링-페데스탈로 구성된 대형시계구조물의 진동을 해석하였다. 해석방법의 유효성을 평가하기 위해 응답의 정도와 계산소요시간을 유한요소법의 결과와 비교 분석하였다.

  • PDF

System Condensation Technique-Based Inverse Perturbation Method of Damage Detection (시스템 축소기법이 적용된 역섭동법을 이용한 손상탐지)

  • Choi, Young-Jae;Lee, U-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.98-104
    • /
    • 2002
  • System condensation technique improves the efficiency of the inverse perturbation method of damage detection developed in the previous work. The technique is applied to transform the unmeasured DOFs to the measured DOFs. This approach makes it possible to eliminate the unmeasured DOFs, which accelerates the computational efficiency. The numerical instability problems due to the system condensation technique are also resolved by updating the transformation matrix for each step, and also by adopting the accelerated improved reduced system(AIRS) condensation method.

섭동법을 이용한 구조 재설계 기법

  • 김종현;임채환
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.31 no.1
    • /
    • pp.22-25
    • /
    • 1994
  • 종래의 재설계 방법으로는 시행착오 방법이 있다. (Fig. 1 참고). 이 방법은 설계자의 경험이나 직관 등에 의하여 설계를 변경한 후 다시 구조해석을 하여 재설계조건의 만족여부를 확인하는 방법이다. 이때 재설계조건을 만족하지 않을 경우 설계를 다시 바꾸고 구조해석으로 재설계조 건을 확인하여야 한다. 따라서 이 방법은 비효율적이고 설계조건에 쉽게 맞추기도 어렵다. 이러한 단점을 보완한 새로운 재설계방법으로 민감도 해석(Sensitivity Analysis)과 섭동법(Perturbation )에 의한 방법이 있다. 민감도 해석은 설계조건을 설계변수의 민감도로 나타내는 방법이고 섭동 법은 설계조건을 설계변수들의 함수로 나타내는 방법이다. 대형구조물의 구조해석과 구조설계 문제는 대부분 유한요소법에 의존한다. 따라서 이러한 대형구조물의 재설계 도구가 되기 위해서 쟤설계 프로그램은 유한요소해석 프로그램의 후처리 프로그램(Postprocessor)으로 개발되어야 한다. 이러한 전제조건 때문에 설계가 끝나고 유한요소해석을 행한 후 재설계를 하기 위해서 유한요소해석 모델을 사용하는 것이 바람직하다.

  • PDF

An Analysis of Dynamic Characteristics of Air-Lubricated Slider Bearing by Using Perturbation Method (섭동법을 이용한 공기윤활 슬라이더 베어링의 동특성 해석)

  • Gang, Tae-Sik;Choe, Dong-Hun;Jeong, Tae-Geon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1520-1528
    • /
    • 2000
  • This study presents a method for determining bearing stiffness and damping coefficients of air-lubricated slider bearing, and shows influences of air-bearing surface geometry(recess depth, crown an d pivot location) on flying attitude and dynamic characteristics. To derive the dynamic lubrication equation, the perturbation method is applied to the generalized lubrication equation which based on linearized Boltzmann equation. The generalized lubrication equation and the dynamic lubrication equation are converted to a control volume formulation, and then, the static and dynamic pressure distributions are calculated by finite difference method. The recess depth and crown of the slider show significantly influence on flying attitude and dynamic characteristics comparing with those of pivot location.

Nonlinear Dynamic Analysis of Space Truss by Using Multistage Homotopy Perturbation Method (시분할구간 호모토피 섭동법을 이용한 공간 트러스의 비선형 동적 해석)

  • Shon, Su-Deok;Ha, Jun-Hong;Lee, Seung-Jae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.9
    • /
    • pp.879-888
    • /
    • 2012
  • This study aims to apply multistage homotopy perturbation method(MHPM) to space truss composed of discrete members to obtain a semi-analytical solution. For the purpose of this research, a nonlinear governing equation of the structures is formulated in consideration of geometrical nonlinearity, and homotopy equation is derived. The result of carrying out dynamic analysis on a simple model is compared to a numerical method of 4th order Runge-Kutta method(RK4), and the dynamic response by MHPM concurs with the numerical result. Besides, the displacement response and attractor in the phase space is able to delineate dynamic snapping properties under step excitations and the responses of damped system are reflected well the reduction effect of the displacement.

Development of aerodynamic noise measurement method for high-speed trains (고속철도차량의 공력소음 측정 시험법 개발)

  • Minseung Jung;Jaehwan Kim;Hyung-Suk Jang;Jonghwan Kim;Cheolung Cheong;Kwongi Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.131-137
    • /
    • 2024
  • Aerodynamic noise generated by the surrounding flow of a train traveling at high speed affects both outdoor and indoor noise. This study's goal is to develop a test method to measure and quantitatively evaluate aerodynamic noise through pressure perturbation data on the train surface. To accurately evaluate aerodynamic noise, it is important to separate and evaluate the compressive and incompressible pressure fluctuations mixed in the acquired surface pressure fluctuation data. This is because the noise transmission characteristics of the two pressure fluctuations are different. First, the installation length and interval of the microphone were determined to acquire surface pressure fluctuation data, and wavenumber-frequency analysis was performed to separate incompressible pressure fluctuation and compressible pressure fluctuation to obtain a sound pressure level spectrum. Finally, as a result of comparing the test results measured in the train head and trail, It was confirmed that the pressure fluctuation on the train head surface was greater than that on the tail.

Application of Perturbation Method to the Dynamic Analysis of Free-free Beam (자유-자유보의 동적해석에 대한 섭동법의 적용)

  • Kwak, Moon-K
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.46-52
    • /
    • 2005
  • This paper is concerned with the application of perturbation method to the dynamic analysis of free-free beam. In general, the rigid-body motions and elastic vibrations are analyzed separately. However, the rigid-body motions cause vibrations and elastic vibrations also affect rigid-body motions in turn, which indicates that the rigid-body motions and elastic vibrations are coupled in nature. The resulting equations of motion are hybrid and nonlinear. We can discretize the equations of motion by means of admissible functions but still we have to cope with nonlinear equations. In this paper, we propose the use of perturbation method to the coupled equations of motion. The resulting equations consist of zero-order equations of motion which depict the rigid-body motions and first-order equations of motion which depict the perturbed rigid-body motions and elastic vibrations. Numerical results show the efficacy of the proposed method.

Dynamic Analysis of Space Structure by Using Perturbation Method (섭동법을 이용한 우주 구조물의 동적 운동 해석)

  • Kwak, Moon-K.;Seong, Kwan-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.674-679
    • /
    • 2005
  • This paper is concerned with the application of perturbation method to the dynamic analysis of space structure floating in space. In dealing with the dynamics of space structure, the use of Lagrange's equations of motion in terms of quasi-coordinates were suggested to derive hybrid equations of motion for rigid-body translations and elastic vibrations. The perturbation method is then applied to the hybrid equations of motion along with discretization by means of admissible functions. This process is very tiresome. Recently, a new approach that applies the perturbation method to the Lagrange's equations directly was proposed and applied to the two-dimensional floating structure. In this paper, we propose the application of the perturbation method to the Lagrange's equations of motion in terms of quasi-coordinates. Theoretical derivations show the efficacy of the proposed method.

  • PDF

Long Waves Generated by Short Wave Groups over a Step: Governing Equations (계단지형을 지나는 파군에 의한 장파의 생성: 지배방정식)

  • Jo, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.6
    • /
    • pp.651-657
    • /
    • 2001
  • The second-order long waves generated by short wave groups propagating over a step are theoretically investigated. The diffraction of short waves is firstly formulated and the governing equations of second-order long waves are then derived by using a multiple-scale perturbation method. It is observed that free and locked long waves are generated and propagated with different velocities.

  • PDF