• Title/Summary/Keyword: 섬유 혼입율

Search Result 113, Processing Time 0.028 seconds

An Experimental Study on the Curing Method and PP Fiber Mixing Ratio on Spalling Resistance of High Strength Concrete (양생요인 및 PP 섬유 혼입율 변화에 따른 고강도 콘크리트의 폭렬특성)

  • Han, Cheon-Goo;Kim, Won-Ki
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.6
    • /
    • pp.113-119
    • /
    • 2009
  • This study is to investigate the fundamental and fireproof qualities of high strength concrete corresponding to changes in the curing factors and the PP fiber ratio. The results were as follows. For the fundamental characteristics of concrete, the fluidity was reduced in proportion to the increase in the PP fiber ratio. The compressive strength was somewhat reduced according to an increase in the PP fiber ratio. However, it had the high strength scope of more than 60 MPa at 7 days and of more than 90 MPa at 28 days. On the spalling mechanism followed by changes of the water content ratio, spalling was prevented in all combinations, except the specimen without PP fiber and subjected to 3.0% of moisture contents. When spalling was prevented at that time, the residual compressive strength ratio was 22%~41% and the mass reduction ratio was 5%~7%, which was relatively favorable. As the spalling mechanism corresponds to changes in the curing method, spalling was prevented in concrete with a PP fiber mixing ratio of more than 0.05% in the event of standard curing, and in concrete with a PP fiber mixing ratio of more than 0.10% in the case of steam curing and autoclave curing. In these cases, when spalling was prevented, the residual compressive strength ratio was 23~42% and the mass reduction ratio was 7~11%. In these results, the ease of spalling prevention in high strength concrete was inversely proportional to the water content ratio. Depending on the curing method, spalling was prevented in concrete with over 0.05% PP fiber with standard curing and in concrete with over 0.1% PP fiber with steam curing and autoclave curing.

Spalling Properties of 60, 80MPa High Strength Concrete with Fiber (복합섬유(PP, NY)를 혼입한 60, 80MPa 3성분계 고강도콘크리트의 내화특성)

  • Kim, Seong-Deok;Kim, Sang-Yun;Bae, Ki-Sun;Park, Su-Hee;Lee, Bum-Sik
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.4
    • /
    • pp.3-9
    • /
    • 2010
  • Fire resistance and material properties of high-strength concrete (W/B 21.5%, 28.5%) with OPC, BS and FA were tested in this study. Main factors of the test consisted of fiber mixing ratio and W/B. Two types of fiber (NY, PP) mixed with the same weight were used for the test. The fiber mixing ratios were 0%, 0.05%, 0.1%, and 0.2% of the concrete weight. After performing the test, Under the W/B level of 21.5% and 28.5%, the spalling was effectively resisted by using the high strength concrete with fiber mixing ratios of 0.05%~0.1%. Compressive strength, flowability and air content are similar those of the fiberless high-strength concrete with the same W/B.

Crack Analysis of CFRD Face Slab Concrete Using Blended Fiber (Blended 섬유를 사용한 CFRD 표면 차수벽 콘크리트의 균열발생 가능성 분석)

  • Woo, Sang-Kyun;Song, Young-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.653-656
    • /
    • 2008
  • The main purpose of this research was to enhance the durability in both the design and construction of dams. Especially, in case of rockfill dams, the durability of face slab concrete in a concrete-faced rockfill dam(CFRD) is achieved by optimizing the fly ash replacement for cement and application of blended fiber. The effect on durability and thermal property corresponding to the increasing replacement of fly ash and application of blended fiber was evaluated, and the optimum value of fly ash replacement and blended fiber application was recommended. The results show that 15% of fly ash replacement and 0.9kg/m3 of blended fiber application was found to be an optimum level and demonstrated excellent performance in durability and thermal property.

  • PDF

Fundamental Properties and Reduction of Autogenous Shrinkage of HPFRCC Depending on Various Fiber Contents and ERCO Dosages (섬유 및 ERCO 혼입율 변화에 따른 HPFRCC의 기초적 특성 및 자기수축 저감)

  • Jo, Sung-Jun;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Recently, because of the terrorisms or warfare, the damages of human life or facilities have been increased. Hence, the Korean government launched the research group for high performance fiber reinforced cementitious composite (HPFRCC) with increased demanding on protecting and anti-explosive structures. Therefore, in this research, to apply the HPFRCC on military facilities with optimum performance on workability and performance, the fundamental properties and reduction of autogenous shrinkage of HPFRCC with various combinations of steel and organic fiber and emulsified refined cooking oil (ERCO) were evaluated. As a result, based on the comprehensive analysis, for favorable workability, strength, and autogenous shrinkage, 1.5 % of combined fiber of short steel fiber and long organic fiber and 0.5 % of ERCO was suggested as an optimum conditions.

Fiber Type Effects on the Flexural Behavior of Steel Fiber Reinforced Concrete Beams (강섬유의 형태에 따른 SFRC보의 휨거동에 관한 연구)

  • Jeon, Chan Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.95-106
    • /
    • 1992
  • This paper presents a comparative evaluation of five different types of steel fibers used as reinforcing material in concrete beams. Two types of plain and RC beams were prepared to compare the relative flexural behavior. The fibers used were dog bone (paddled), both ends hooked. コ-type straight. crimped and wavy type with aspect ratio of 43 to 75. Fiber volume fraction of 1 to 2% were used while shear span to depth ratio (aid) and steel ratio p were fixed. Fiber reinforcement effect index Ef and effective toughness index Te were adopted to evaluate fiber reinforcing effects. The effect of fiber reinforcement on flexural strength is higher in plain beams than in RC beams. Hooked and dog bone type fibers were found to be more effective than the other type ones in enhancing the flexural strength and post-peak energy absorption capacity of concrete beams.

  • PDF

Combined Effect of Fireproofing Gypsum Board on Residual Strength and Fire Resistance of Fiber Addition High Strength Concrete-Model Column (방화석고보드 부착이 섬유혼입 고강도 콘크리트 모의 기둥부재의 내화특성 및 잔존내력에 미치는 영향)

  • Yang, Seong-Hwan
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.4
    • /
    • pp.442-450
    • /
    • 2012
  • In this study, fire resistance and residual strength were examined after the addition of PF fiber and bonding fireproofing gypsum board to a high strength concrete-model column of 50 MPa grade. At the beginning of the experiment, all the properties of base concrete appeared to satisfy the target range. In terms of the internal temperature record, a trend of slightly high temperature was shown when the fireproofing gypsum board was not bonding, and when the fireproofing gypsum board was bonding, as PF content increased gradually, the temperature was gradually lowered. In terms of the relationship, as time elapsed a low temperature was shown when fiber was mixed, and when the board was bonding, the trend of lower temperature could be confirmed. Meanwhile, in terms of spalling property, a severe explosive fracture was generated at PF 0%, and falling off was prevented as the fiber content was increased; however, discoloration and a multitude of cracks were discovered, and when the board was bonding, the trend in which the exterior became satisfactory when the content was increased emerged. In terms of the residual compressive strength, measuring of strength could not be performed at PF 0% without bonding of board, and the strength was increased as the fiber content was increased; however, there was a decrease in strength of about 30 ~ 40%, and in the case of PF 0% with the bonding of board, the strength could be measured; however, about an 80% decrease in strength was shown, and only about a 10 ~ 20% decline in strength was displayed, as the range of decrease was reduced as the fiber content was increased. Considering all of these factors, it was determined that a more efficient enhancement of fire resistance was obtained when two methods are applied in combination rather than when the PF fiber content and bonding of fireproofing gypsum board are utilized individually.

Bond, Flexural Properties and Control of Plastic Shrinkage Cracking of Crimped type Synthetic Fiber Reinforced Cement Based Composites (Crimped Type 합성섬유로 보강된 시멘트 복합재료의 부착, 휨 및 소성수축균열제어 특성)

  • Won, Jong Pil;Park, Chan Gi;Lim, Dong Hee;Back, Chul Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.1033-1039
    • /
    • 2006
  • The purpose of this study are to evaluated bond, flexural properties and control of plastic shrinkage cracking of crimped type synthetic fiber with amplitude 6 mm and height 1.8 mm reinforced cement based composites. Bond and flexural test were conducted in accordance with the JCI-SF 8 and JCI SF-4 standard, respectively. The plastic shrinkage cracking test was conducted for evaluating the effect of fiber in reducing shrinkage cracking in cement based composites. Test results indicated that the crimped typel synthetic fibers performed significantly better than the straight type fiber in terms of interface toughness and pullout load and the crimped type synthetic fibers improved the flexural toughness of concrete. Also, the increasing the crimped type synthetic fiber volume fraction from 0.00% to 1.00% improved the plastic shrinkage cracking resistance. Specially, the effect of control of plastic shrinkage cracking is excellent at the more than 0.5% fibre volume fraction.

Fire Resistant Properties of the RC Columns Applying Various Splling Prevention Methods (폭렬방지공법 변화에 따른 RC 기둥부재의 내화특성)

  • Han, Cheon-Goo;Pei, Chang-Chun;Lee, Jong-Suk;Lee, Chan-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.119-126
    • /
    • 2009
  • This study investigated the fire resistance of RC columns applying Fiber addition method, Fire board attaching method, and Fire proof sparying method. The results were summarized as following. The test showed that increase of fiber content, as expected, decreased the fluidity of fresh concrete, but for the types of fiber, the specimens containing nylon(NY) was favorable. The incline of fiber content also affected on the air content of concrete, which the specimens adding polypropylene(PP) fiber was the lowest, followed by a less decrease in polyvinyl alchhol(PVA) and then NY respectively. For the compressive strength at 28days, it was over 50MPa and showed slight increasing tendency by rising fiber contents. After the fire test completed, control concrete exhibited the severe demage, while the specimens containing more than 0.05vol.% of PP and NY was able to protect from spalling. In the case of splay, the partly spalling occurred at the all finishing material, however the RC columns were protected from spalling. For the methods attached with boards, all RC columns were protected except the dry attaching method. The reduced weight ratio was favorable because it was below 8 % except for plain concrete.

A Study on the Fluidity Properties and Strength Properties of Non-sintered Hwangtoh mixed with PVA Fiber (PVA섬유를 혼입한 비소성 황토 콘크리트의 유동특성 및 강도특성에 관한 연구)

  • Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.3
    • /
    • pp.49-56
    • /
    • 2010
  • The purpose of this study is to examine the effect of variations in the mix rate of PVA fiber and the replacement ratio of non-sintering Hwangtoh on non-sintering Hwangtoh mortar and concrete mixed with PVA fiber. For water to binder ratio, mortar and concrete were both 50%, and PVA fiber mix rate was 0% and 0.3%. The replacement ratio of non-sintering Hwangtoh was 0, 25, 50 and 75(%) for mortar, and 0, 15, 30 and 50(%) for concrete. The properties of the mortar and concrete were compared and analyzed in 4 different levels, and the results can be summarized as follows. The replacement ratio of 30% of the non-sintering Hwangtoh, and the PVA fiber mix rate of 0.3% is determined to result in concrete of high quality, including strength and fluidity, and crack control by plastic shrinkage.

Optimum Mix of Extrusion panel Using Low Energy Curing Admixture (LA) based on Ground Granulated Blast-Furnace Slag and Ladle Furnace Slag (고로슬래그와 환원슬래그를 기반으로 한 저에너지양생용 결합재를 사용한 압출성형패널의 최적배합)

  • Kim, Ha-Seog;Baek, Dae-Hyun;Lee, Sea-Hyun
    • Resources Recycling
    • /
    • v.24 no.2
    • /
    • pp.13-22
    • /
    • 2015
  • $CO_2$ emitted from building materials and construction materials industry reaches about 67 million tons, which occupy about 30 % of $CO_2$ emitted from the construction field. Controls on the use of consumed fossil fuels and reduction of emission gases are essential for the reduction of $CO_2$ in the construction area as we reduce the second and third curing to emit $CO_2$ in the construction materials industry. Accordingly, this study applied the low energy curing admixture (hereinafter "LA") to the extruded panels to observe the physical properties, depending on the mixing amount of fiber, type of fiber and mixing ratio of fiber. The type of fiber did not appear to be a main factor to affect strength, while the LA mixing ratio and mixing amount of fiber appeared to be major factors to affect strength. Especially, the highest strength was developed when the LA mixing ratio was 40%, whereas the test object with the mixing ratio of 50% resulted in the decrease of strength. In addition, it appeared that the mixing ratio of fiber greatly affected flexural strength and strength increased as the mixing ratio increased.