• Title/Summary/Keyword: 섬유 방향성

Search Result 301, Processing Time 0.035 seconds

Fabrication of axially aligned $TiO_2/PVP$ nanofibers ($TiO_2/PVP$ 나노섬유의 제조)

  • Lee, Se-Jong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.1
    • /
    • pp.30-34
    • /
    • 2007
  • [ $TiO_2/PVP$ ] nanofibers were electrospun by varying the collector grounding design to improve the axial alignment of fibers. The collectors are composed of two pieces of conductive substrates separated by a gap f3r the uniaxial alignment of fibers (X design). The collectors consisting of two sets of substrates placed by $90^{\circ}$ (XY design) equipped with a timer are also prepared for biaxial alignment of fibers. Both collectors show that the charged nanofibers are stretched to span across the gap between the electrodes. Experimental results reveal that the latter collector is more effective on the directionality of electrospun $TiO_2/PVP$ nanofibers due to the dissipation of accumulated electric charge between the collectors.

Comparative Flexural Performance of Concrete Panels Reinforced with Ring-Type Steel Fibers and with Hooked-End Straight Steel Fibers (링 형태 강섬유와 양단갈고리 선형 강섬유 보강 콘크리트 패널의 휨성능 비교)

  • Lee, Chadon;Cho, Won-Tack
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.169-178
    • /
    • 2009
  • Ring-type steel fibers (RSFs) of the closed circular shape, have different resistance mechanisms other than straight steel fibers. RSFs also maintain the same value of the orientation factor for the plane enclosed by the fiber ring perimeter. In this research, comparative studies were performed for the panels reinforced with RSFs and with straight steel fibers of $15kg/m^3$ and $30kg/m^3$, respectively. Resisting mechanisms of RSFs were identified and higher toughness indices were experimentally observed for the concrete panels reinforced with RSFs than with straight steel fibers. Orientation factor for the RSF was suggested. It was found that RSFs were more effective in increasing toughness for the panel specimens with relatively thinner thickness than beam specimens.

Quantitative Evaluation of Fiber Dispersion of the Fiber-Reinforced Cement Composites Using an Image Processing Technique (이미지 프로세싱 기법을 이용한 섬유복합재료의 정량적인 섬유분산성 평가)

  • Kim, Yun-Yong;Lee, Bang-Yeon;Kim, Jeong-Su;Kim, Jin-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.148-156
    • /
    • 2007
  • The fiber dispersion in fiber-reinferced cementitious composites is a crucial factor with respect to achieving desired mechanical performance. However, evaluation of the fiber dispersion in the composite PVA-ECC (polyvinyl alcohol-engineered cementitious composite) is extremely challenging because of the low contrast of PVA fibers with the cement-based matrix. In the present work, a new evaluation method is developed and demonstrated. Using a fluorescence technique on the PVA-ECC, PVA fibers are observed as green dots in the cross-section of the composite. After capturing the fluorescence image with a charged couple device (CCD) camera through a microscope, the fiber dispersion is evaluated using an image processing technique and statistical tools. In this image processing technique, the fibers are more accurately detected by employing an enhanced algorithm developed based on a discriminant method and watershed segmentation. The influence of fiber orientation on the fiber dispersion evaluation was also investigated via shape analyses of fiber images.

Coupled Analysis of Injection Molding Filling and Fiber Orientation including In-Plane Velocity Gradient Effect (평면 속도구배 효과를 포함한 사출성형 충전유동과 섬유배향의 연계 해석)

  • 권태헌
    • The Korean Journal of Rheology
    • /
    • v.6 no.2
    • /
    • pp.104-118
    • /
    • 1994
  • 단섬유 보강 플래스틱 재료의 사출성형 충전공정에서 금형재의 유동장이 섬유 배향 상태를 형성하는데 중요한 역할을 할 뿐만 아니라 섬유의 배향상태가 역으로 유동장에 영향 을 미친다. 충전유동과 섬유 배향의 연계해석을 위하여 단섬유에 의한 추가적인 응력을 포 함하는 Dinh과 Armstrong의 이방성 구성방정식을 충전유동의 해석에 도입하였다. 평명방향 으로의 속도구배에 의한 응력을 고려하여 새롭게 유도된 압력 지배방정식과 에너지방정식을 유한요소법과 유한차분법을 이용하여 풀고 동시에 2차배향텐서의 변화방정식을 4차 Runge-kutta 방법을 이용하여 풀었다. 절점 게이트 주변의 확장유동영역과 라인게이트를 통한 수축유동영역에서 평면방향으로의 속도구배에 의한 응력이 유동장에 미치는 영향을 고 찰하였다. 확장유동영역에서는 평면방향으로의 속도구배에 의한 영향이 추가적인 유량으로 나타나면서 주어진 유량조건하에서 평면방향으로의 속도구배에 의한 응력을 고려하지 않은 경우보다 작은 압력구배를 나타냈다. 수축유동영역에서는 위와 반대의 결과를 보였다. 이러 한 경향은 섬유의 부피분율이증가하거나 모양비가 커짐에 따라 증가한다.

  • PDF

Vibration and Damping Characteristic of Composite Laminates Embedding Directional Damping Materials (방향성 있는 감쇠재료가 삽입된 복합적층판의 진동 및 감쇠특성)

  • 김성준
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.39-44
    • /
    • 2003
  • Embedding viscoelastic-damping materials into composites can greatly increase the damping properties of composite structures. Usually viscoelastic-damping materials behave isotropically so that their damping properties are the same in all directions. In these days, there is a desire to develop viscoelastic-damping materials that behave orthotropically so that damping properties vary with material orientation. These orthotropic damping materials can be made by embedding rows of thin wires within the viscoelastic materials. These wires add significant directional stiffness to the damping materials. where the stiffness variation with wire orientation follows classical lamination theory. In this paper, the loss factor of composite laminate was evaluated based on Ni and Adams' theory. To investigate the effect of directional damping material, the low-velociy impact response analysis was also performed. The present analysis results show that directional damping material has a great influence on vibration and damping characteristic of composite laminate.

Software Development for the Visualization of the Orientation of Brain Fiber Tracts in Diffusion Tensor Imaging Using a 24 bit Color Coding

  • Jung-Su Oh;In Chan Song;Ik-Hwan Cho;Jong-Hyo Kim;Kee Hyun Chang;Kwang-Suk Park
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.43-47
    • /
    • 2004
  • Interests in human brain functionality and its connectivity have much frown up. DTI (Diffusion tensor imaging) has been known as a non-invasive MR) technique capable of providing information on water diffusion in tissues and the organization of white matter tract. Thus. It can provide us the information on the direction of brain fiber tract and the connectivity among many important cortical regions which can not be examined by other anatomical or functional MRI techniques. In this study. was used the 24 bit color coding scheme on the IDL platform in the windows environment to visualize the orientation of major fiber tracts of brain such as main association, projection, commissural fibers and corticospinal tracts. We additionally implemented a color coding scheme for each directional component and FA (fractional anisotropy), and used various color tables for them to be visualized more definitely. Consequently we implemented a fancy and basic technique to visualize the directional information of fiber tracts efficiently and we confirmed the feasibility of the 24 bit color coding scheme in DTI by visualizing main fiber tracts.

방축처리된 양모의 염색성 평가

  • 김현정;김재필
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.114-117
    • /
    • 1998
  • 양모의 수축은 양모를 습윤 처리할 때 양모 스케일의 모근과 모단방향의 마찰계수가 다르기 때문에 일어나는 현상이므로 양모의 스케일을 화학적으로 개질하여 두 방향의 마찰계수의 차를 감소시키면 양모의 수축을 감소시킬 수 있다. 이와 같은 원리로 방축효과를 주는 양모의 방축 가공제로는 90% 이상이 염소 또는 염소를 발하는 물질인데 이 가공으로 인한 폐수는 환경문제를 일으키는AOX를 함유하고 있어서 이를 대체하고자 하는 연구가 여러 곳에서 진행되고 있다. (중략)

  • PDF

Evaluation of tensile strengths and fracture toughness of plain weave composites (평직 CFRP 복합재료의 인장강도 및 파괴저항성 특성 평가)

  • Park, Soon-Cheol;Kang, Sung-Su;Kim, Gug-Yong;Choi, Jung-Hun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.862-868
    • /
    • 2013
  • The mechanics of woven fabric-based laminated composites is complex. Then, many researchers have studied woven fabric CFRP materials but fracture resistance behaviors for composites have not been still standardized. It also shows the different behavior according to load and fiber direction. Therefore, there is a need to consider fracture resistance behavior in conformity with load and fiber direction at designing structure using woven CFRP materials. In this study, therefore, the tensile strength and resistance for plain-weave CFRP composite materials were investigated under various different angle condition(load to fiber angle: $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$). Tensile strength and fracture toughness tests were carried out under mode I transverse crack opening load by using compact tension specimens.