• 제목/요약/키워드: 섬유복합체

Search Result 401, Processing Time 0.026 seconds

Interfacial Properties of Polypropylene Fiber in High Performance Fiber Reinforced Cement Composites (고인성 섬유보강 복합체 내에서 폴리프로필렌 섬유의 계면 부착성능)

  • Han Byung-Chan;Jeon Esther;Park Wan-Shin;Lee Young-Seak;Hiroshi Fukuyama;Yun Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.108-111
    • /
    • 2004
  • The polypropylene(PP) fiber is poised as a low cost alternative for reinforcement in structural applications in comparison with other high performance fibers, such as the polyvinyl-alcohol(PVA), polyethylene, carbon and aramid fiber. The mechanical properties of the composite are strongly determined by the interfacial behavior of fiber and cementitious matrix. The crack bridging mechanism contribute to composite toughness from activation of the fiber-matrix interface where energy is dissipated through debonding of the interface and fiber pullout. In this study, therefore, the pullout behavior of PP fibers is investigated. Experimental work includes the investigation of the interfacial properties, and the composite property. The quantification of interfacial properties, the frictional bond is achieved through single fiber pullout test. A study on the effect of inclination angle on fiber pullout behavior is also conducted.

  • PDF

Mixing and Flexural Strength Characteristics of HPFRCCs using Steel Cord and Carbon Fiber (강섬유와 탄소섬유를 사용한 고인성 시멘트 복합체의 비빔 및 휨강도 특성)

  • Lee, Won-Suk;Byun, Jang-Bae;Yun, Hyun-Do;Kim, Sun-Woo;Jeon, Esther
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.377-380
    • /
    • 2006
  • HPFRCCs(High performance fiber reinforced cementitious composites) is a class of FRCCs(Fiber reinforced cementitious composites) exhibit multiple crack. Multiple crack lead to improvement in ductility, toughness, and deformation capacity under compressive and tensile stress. These properties of HPFRCCs are affected by type of fiber, water cement ratio, type of admixture and rate of substitution. Furthermore these influence dispersion of fiber, mixing performance and fluidity of mixture. In this paper, HPFRCCs made of steel cord and carbon fiber were tested with water cement ratio, type of admixture and rate of substitution to evaluate characteristics of mixing and flexural strength.

  • PDF

Effects of Fiber Volume Fraction and Cross-Section Shape Modifications on the Seismic Performance of Precast Infill Walls with SHCC (섬유의 혼입율 및 단면 형상 변화에 따른 SHCC 프리캐스트 끼움벽의 내진성능)

  • Kim, Sun-Woo;Lee, Young-Oh;Cha, Jun-Ho;Yang, Hae-Jun;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.125-126
    • /
    • 2010
  • In this study is analysis of infill walls fiber volume fraction and reduced the inside cross-section of strain-hardening cement composite(SHCC) infill walls is to evaluate seismic performance experimentally.

  • PDF

Effect of Strain Rate on Tensile Behavior of Hybrid Fiber Reinforced Cement-based Composites (하이브리드 섬유보강 시멘트복합체의 인장거동에 미치는 변형속도의 영향)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Bo-Kyeong;Lee, Sang-Kyu;Kim, Gyeong-Tae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.122-123
    • /
    • 2017
  • In this study, the tensile behavior of single and hybrid fiber reinforced cement composite according to strain rate was evaluated. Experimental results, in the strain rate 10-6/s, fiber reinforced cement composite showed improved of tensile strength and decrease of strain at peak stress as SSF volume content increased. In the strain rate 101/s, the single and hybrid reinforced cement composite' s tensile properties are improved, because of the improved bond strength between the fiber and matrix. And hybrid fiber reinforced cement composite showed high energy absorption capacity, because the SSF prevented the cracking and fracture of the surrounding matrix when during the HSF pull-out.

  • PDF

Strain Properties on Rear Side of Fiber Reinforced Concrete and Cement Composite by Impact Load (충격하중을 받는 섬유보강 콘크리트 및 시멘트 복합체의 배면변형특성)

  • Lee, Sang-Kyu;Kim, Gyu-Yong;Lee, Bo-Kyeong;Yoon, Min-Ho;Son, Min-Jae;Kim, Gyeong-Tae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.158-159
    • /
    • 2017
  • In this study, it evaluate the strain properties of fiber reinforced concrete and fiber reinforced cement composite. The types of fiber are Hooked steel fiber and it was mixed 0.5, 1.0 vol.% in concrete and 1.0, 2.0 vol.% in cement composites. The impact test was conducted by using a projectile (diameter: 25mm, velocity: 170m/s) and strain properties on the rear side of each specimen was evaluated by strain gage. After the impact test, fracture grade, fracture depth was evaluated.

  • PDF

Evaluation of Electromagnetic Pulse Shielding Performance of Amorphous Metallic Fiber Reinforced Cement Composite (비정질 강섬유 보강 시멘트 복합체의 전자파 차폐성능 평가)

  • Lee, Sang-Kyu;Kim, Gyu-Yong;Hwang, Eui-Chul;Son, Min-Jae;Baek, Jae-Wook;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.50-51
    • /
    • 2018
  • In this study, it evaluate the electromagnetic pulse shielding performance of amorphous metallic fiber reinforced cement composite with other steel fiber reinforced cement composite. Hooked-ended steel fiber, smooth steel fiber and amorphous metallic fiber were reinforced 2.0 vol.% in cement composites respectively. The electromagnetic pulse shielding performance was evaluated by MIL-STD-188-125-1. As a result, shielding performance of amorphous metallic fiber reinforced cement composite was higher than Hooked-ended and smooth steel fiber reinforced cement composites. In addition, the relationship between the electrical conductivity and the electromagnetic pulse shielding performance of the cement composite was confirmed.

  • PDF

Characterization and Preparation of Electrospun Poly(ethylene terephthalate) (PET) Nonwoven/Polyurethane (PU) composites (전기방사된 PET 부직포/PU 복합체의 제조 및 특성)

  • Kim, Kwan-Woo;Lee, Keun-Hyung;Kim, Chul-Ki;Kim, Hak-Yong;Lee, Sung-Gu;Park, Soo-Jin
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.275-276
    • /
    • 2003
  • Electrostatic spinning or electrospinning has been recently paid attention to prepare ultrafine fiber mats which are composed of diameters in a range of submicrons to nanoscale size[l]. Due to small diameters and porous structure, electrosun fibers have a high specific surface area and expected to use for broad applications, such as filters, membranes, wound dressing materials, artificial blood vessels. a nonwoven fabric, a reiforcement of nanocomposites[2,3], etc. (omitted)

  • PDF

Cerebral cortical or Cerebellar Nuclear Lesion-induced Synaptic Reorganization in the Basilar Pons of the Rat (대뇌피질 또는 소뇌핵 병변에 따른 쥐 교핵내 연접구조의 변화)

  • 이현숙
    • The Korean Journal of Zoology
    • /
    • v.34 no.3
    • /
    • pp.382-388
    • /
    • 1991
  • 쥐의 교핵내에서 대뇌피질(또는 소뇌핵) 면면시 소뇌교핵계(또는 대뇌교핵계)의 연접구조의 변화에 대한 전자현미경적 관찰결과, 대뇌교핵계의 수입로 차단의 경우 소뇌교핵계의 신경섬유는 교핵세포의 원위 가지돌기쪽으로 발아하며, 소뇌핵 병변시 서뇌교핵계의 신경섬유는 근위가지돌기와 연접을 형성하거나 또는 여러개의 가지돌기 부속물들과 사구체형 연접복합체를 형성함이 밝혀졌다. 이상의 연구는 광학현미경적 관찰에서 언급된 대뇌피질(또는 소뇌핵) 병변에 따른 교핵내 신경종말의 밀도증가에 대한 보고를 뒷받침해주며, 소뇌핵 병변시 운동결핍증의 시간경과에 따른 회복에 대한 신경해부학적 근거를 제시한다.

  • PDF