• Title/Summary/Keyword: 섬유보강 시멘트복합체

Search Result 138, Processing Time 0.027 seconds

Numerical Studies on the Control Performance of Fiber Orientation for Nozzle with Inside Blades (타설 노즐의 내부 블레이드에 의한 섬유 방향성 제어 성능에 관한 수치 해석적 연구)

  • Lee, Jong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.157-163
    • /
    • 2018
  • This study is aimed at controlling the fiber orientation and improve the fiber distribution in fiber-reinforced cement composites using blades that can be placed inside the existing nozzles. To optimize the blade parameters, multi-physics finite element analysis was performed that could account for the flow of the cementitious matrix material, the movement of the entrained fibers, and the interactions with the nozzle. As a result, this study defined the blade distance, length, and position as a function of the fiber length to be used in the field. The blades with a distance from 1.2 to 2.4 times the fiber length and length from 4 to 8 times the fiber length, as well as located at below 14 times the fzfiber length from the nozzle exit maintained the fiber orientation angle less than $5^{\circ}$. In addition, the blade-type nozzle proposed in the study can be attachable and detachable to the conventional casting equipment, and thus it can provide the usability and convenience in practical applications.

An Experimental Study on Moisture Sensitivity of High Performance Cellulose Fiber Reinforced Cement Composites (고성능 셀룰로우스 섬유보강 시멘트 복합체의 수분영향에 관한 연구)

  • 원종필;문제길
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.5
    • /
    • pp.163-170
    • /
    • 1996
  • Cellulose fibers, being fairly strong and stiff as well as cheap and plentiful with low energy demand during manufacture, are strong contenders for the reinforcement of cement-based materials. Cellulose fiber-cement composites, generally manufactured by slurry-dewatering procedure, can find applications in the production of flat and corrugated cement sheets and many other thin-sheet cement products. This paper presents the results of an experimental study concerned with the effects of fiber content and moisture conditions on the flexural performance of these composites. An effort was also made to study the effect of pozzolanic admixtures on the flexural performance in different moisture conditions. The test results obtained were analyzed statistically using the analysis of variance in order to derive reliable conclusions. The results generated in this study were indicative of significant effects of fiber content and moisture condition of flexural performance. There is a tendency in flexural strength to increase in increase in fiber content up to 8%: flexural toughness values continue to increase even at higher fiber contents. Moisture content has a significant effect on the flexural performance. There is a tendency in flexural strength to decrease and flexural toughness to increase with increasing moisture content Composites incorporating pozzolans showed an increase in the flexural strength while slightly reducing the flexural toughness and were sensitive to variations in moisture content.

Effect of Reinforcing Fiber Types on Lap Splice Performance of High Performance Fiber Reinforced Cementitious Composite(HPFRCC) (보강 섬유 종류에 따른 고인성 시멘트 복합체내에서 철근의 겹침 이음 성능)

  • Jeon, Esther;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.153-161
    • /
    • 2007
  • This paper investigates the lap splice performance of structural steel bars embedded in high performance fiber reinforced cementitious composite(HPFRCC) with various matrix ductilities. Matrix ductility is governed fiber type and fiber volume fraction. Fiber types were polypropylene(PP), polyethylene(PE) and hybrid fiber[polyethylene fiber+steel cord(PE+SC)]. The lap splice length$(l_d)$ was calculated according to the relevant ACI code requirements for reinforcing bars in normal concrete. As the result of tests, lap splice strength of HPFRCC using PE1.5 and hybrid fiber increased by up to $82{\sim}91$ percent more than that of concrete. Splice strength and energy absorption capacity of PE0.75+SC0.75 or PE1.5(fiber volume fraction 1.5%) specimen increased more than that of PP2.0(fiber volume fraction 2.0%) specimen. Therefore lap splice performance depends on fiber tensile strength and Young's modulus more than fiber volume fraction. Also, HPFRCC appear multiple crack and ductile postpeak behavior due to bridging of fiber in cementitious composite.

Mechanical Properties of Fiber-reinforced Cement Composites according to a Multi-walled Carbon Nanotube Dispersion Method (다중벽 탄소나노튜브의 분산방법에 따른 섬유보강 시멘트복합체의 역학적 특성)

  • Kim, Moon-Kyu;Kim, Gyu-Yong;Pyeon, Su-Jeong;Choi, Byung-Cheol;Lee, Yae-Chan;Nam, Jeong-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.203-213
    • /
    • 2024
  • This study delves into the mechanical properties of fiber-reinforced cement composites(FRCC) concerning the dispersion method of multi-walled carbon nanotubes(MWCNTs). MWCNTs find utility in industrial applications, particularly in magnetic sensing and crack detection, owing to their diverse properties including heat resistance and chemical stability. However, current research endeavors are increasingly directed towards leveraging the electrical properties of MWCNTs for self-sensing and smart sensor development. Notably, achieving uniform dispersion of MWCNTs poses a challenge due to variations in researchers' skills and equipment, with excessive dispersion potentially leading to deterioration in mechanical performance. To address these challenges, this study employs ultrasonic dispersion for a defined duration along with PCE surfactant, known for its efficacy in dispersion. Test specimens of FRCC are prepared and subjected to strength, drawing, and direct tensile tests to evaluate their mechanical properties. Additionally, the influence of MWCNT dispersion efficiency on the enhancement of FRCC mechanical performance is scrutinized across different dispersion methods.

The Effect of Steel-Fiber Reinforcement on the Compressive Strength of Ultra High Performance Cementitious Composites(UHPCC) (초고성능 시멘트 복합체의 압축강도에 대한 강섬유 보강 효과)

  • Kang, Su-Tae;Park, Jung-Jun;Ryu, Gum-Sung;Kim, Sung-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.110-118
    • /
    • 2010
  • This research dealt with the effect of steel-fiber reinforcement on the compressive strength of ultra high performance cementitious composites (UHPCC) and compared with that in normal steel-fiber reinforced concrete(SFRC). With wide range of compressive strength of UHPCC, experiments on the fiber reinforcement effect confirmed that the compressive strength in UHPCC is also improved by adding fibers as in normal SFRC. The experimental results were compared with previous researches about reinforcement effect by adding fibers, which are limited within 100MPa compressive strength. The comparison revealed the linear relationship between $f'_{cf}-f'_c$ and RI regardless of the magnitude of compressive strength, from which a general equation to express the effect of fiber reinforcement, applicable to various SFRC's with wide range of compressive strength including UHPCC.

Workability and Strength Characteristics of Lathe Scrap Reinforced Cementitious Composites (선반 스크랩 보강 시멘트 복합체의 작업성 및 강도 특성)

  • Lee, Hyun-Jin;Bae, Su-Ho;Kwon, Soon-Oh;Kim, Sung-Wook;Park, Jung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.40-45
    • /
    • 2016
  • It should be noted that the use of the lathe scrap for making fiber reinforced cementitious composites raised friendly environmental effect as well as economy because the lathe scrap is a by-product of steel manefactures and is occurred when lathe and milling works of them are conducted to process steel manufactures. Thus, the purpose of this experimental research is to investigate workability and strength characteristics of lathe scrap reinforced cementitious composites(LSRCCs). For this purpose, three types of lathe scraps were collected from processing plants of metal, and then LSRCCs containing these were made for 2mm width and 40mm length. As a result, it was observed from the test results that the workability of LSRCCs was slightly decreased than plain mortar and the flexural strength of LSRCCs were much larger than these of plain mortar and effect of types of lathe scrap on the characteristics of LSRCCs were somewhat large.

Impact Fracture Properties of Amorphous Metallic Fiber Reinforced Cementitious Composite by Fiber Length (섬유길이에 따른 비정질 강섬유 보강 시멘트 복합체의 충격파괴특성)

  • Lee, Sang-Kyu;Kim, Gyu-Yong;Hwang, Eui-Chul;Son, Min-Jae;Pyeon, Su-Jeong;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.65-66
    • /
    • 2019
  • In this study, flexural strength and impact resistance were evaluated to investigate the fiber length effect of amorphous metallic fiber. As a result, in the case of 30AFRCC, cutoff behavior due to excellent bonding performance by large specific surface area has greatly influence on the flexural and impact resistance performance. In the case of 15AFRCC, the bonding efficiency is relatively low, because the specific surface area is smaller than that of 30AFRCC and the number of fiber is large, so the effect of improving the flexural and impact resistance performance is smaller than that of 30AFRCC.

  • PDF

An experimental study on the tensile performance evaluation of steel fiber reinforced cementitious composites according to fiber pull-out behabior (강섬유보강 시멘트 복합체의 섬유인발거동에 따른 인장성능 평가에 관한 실험적 연구)

  • Lee, Yae-Chan;Kim, Gyu-Yong;Nam, Jeong-Soo;Lee, Sang-Kyu;Shu, Dong-Kyun;Eu, Ha-Min
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.155-156
    • /
    • 2020
  • The purpose of this study is to evaluate tensile performance of cementitious composites reinforced with steel fiber. The tensile performance of steel fiber reinforced cementitious composites is related to the tensile performance of reinforced fiber, and depends on the fracture or pull-out of fiber. Therefore, the tensile performance was compared and analyzed by conducting a direct tensile test on the tensile specimens of cementitious composites reinforced with hook-type steel fiber and amorphous steel fiber.

  • PDF

Tensile Performance of PE Fiber-Reinforced Highly Ductile Cementitious Composite including Coarse Aggregate (골재의 입도분포 변화에 따른 PE 섬유보강 고연성 시멘트 복합체의 인장성능)

  • Lee, Bang Yeon;Kang, Su-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.95-102
    • /
    • 2020
  • For the purpose of developing a PE fiber-reinforced highly ductile cementitious composite having high tensile strain capacity more than 2% under the condition of containing aggregates with large particle size, this study investigated the tensile behavior of composites according to the particle size and distribution of aggregates in the composite. Compared with the mixture containing silica sand of which particle size is less than 0.6 mm, mixtures containing river sand and/or gravel with the maximum particle size of 2.36 mm, 4.75 mm, 5.6 mm, 6.7 mm were considered in the experimental design. The particle size distributions of aggregates were adjusted for the optimized distribution curves obtained from modified A&A model by blending different sizes of aggregates. All the mixtures presented clear strain-hardening behavior in the direct tensile tests. The mixtures with the blended aggregates to meet the optimum curves of aggregate size distributions showed higher tensile strain capacity than the mixture with silica sand. It was also found that the tensile strain capacity was improved as the maximum size of aggregate increased which resulted in wider particle size distribution. The mixtures with the maximum size of 5.6 mm and 6.7 mm presented very high tensile strain capacities of 4.83% and 5.89%, respectively. This study demonstrated that it was possible to use coarse aggregates in manufacturing highly ductile fiber-reinforced cementitous composite by adjusting the particle size distribution.