• Title/Summary/Keyword: 섬유보강 시멘트복합재료

Search Result 47, Processing Time 0.032 seconds

Effect of Polyvinyl Alcohol Fiber Volume Fraction on Pullout Behavior of Structural Synthetic Fiber in Hybrid Fiber Reinforced Cement Composites (하이브리드 섬유 보강 시멘트 복합 재료에서 구조용 합성 섬유의 인발 거동에 미치는 폴리비닐 알코올 섬유 혼입률의 효과)

  • Lee, Jin-Hyung;Park, Chan-Gi
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.461-469
    • /
    • 2011
  • In this study, the effect of polyvinyl alcohol (PVA) fiber volume fraction on the pullout behavior of structural synthetic fiber in hybrid structural synthetic fiber and PVA fiber cement composites are presented. Pullout behavior of the hybrid fiber cement composites and structural synthetic fiber were determined by dog-bone bond tests. Test results found that the addition of PVA fiber can effectively enhance the structural synthetic fiber cement based composites pullout behavior, especially in fiber interface toughness. Pullout test results of the structural synthetic fiber showed the interface toughness between structural synthetic fiber and PVA fiber reinforced cement composites increases with the volume fraction of PVA fiber. The microstructural observation confirms the incorporation of PVA fiber can effectively enhance the interface toughness mechanism of structural synthetic fiber and PVA fiber reinforced cement composites.

A study of permeability of ultra-fine cement matrix for continuous fiber reinforcement (연속섬유 보강용 초미립 시멘트 매트릭스의 침적성 연구)

  • Kim, T.J.;Kim, K.S.;Choi, L.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.177-182
    • /
    • 1999
  • 사용한 보수.보강재, Rod, Fabric, Strand 형상을 콘크리트 구조물등에 보강재로 사용되어왔다. 이 재료는 해양환경하에서 내식성과 내구성을 갖는 철근및 철골대체용 복합소재와 초고층 경량 연속섬유보강 시멘트 복합재료는 탄소섬유, 아라미드섬유, 유리섬유등의 쉬트(sheet)형상을 신건재, 비자성, 비전도성, 전파차폐용 재료등에 사용할수있다. 그러나 FRP Rod를 내식성이 요구되는 철근 및 철골대체재로 사용할 경우에는 폴리머 매트릭스의 열화, 섬유와 폴리머간 계면 접착강도의 한계, 화재시 내화성, 보강재의 인발성등의 단점들을 갖고있다[1]. (중략)

  • PDF

Mechanical and Thermal Characteristics of Cement-Based Composite for Solar Thermal Energy Storage System (태양열 에너지 저장시스템 적용을 위한 시멘트 기반 복합재료의 역학 및 열적 특성)

  • Yang, In-Hwan;Kim, Kyoung-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.9-18
    • /
    • 2016
  • The thermal and mechanical properties of fiber-reinforced cement-based composite for solar thermal energy storage were investigated in this paper. The effect of the addition of different cement-based materials to Ordinary Portland cement on the thermal and mechanical characteristics of fiber-reinforced composite was investigated. Experiments were performed to measure mechanical properties including compressive strength before and after thermal cycling and split tensile strength, and to measure thermal properties including thermal conductivity and specific heat. Test results showed that the residual compressive strength of mixtures with OPC and slag was greatest among cement-based composite. Thermal conductivity of mixtures including graphite was greater than that of any other mixtures, indicating favor of graphite for improving thermal transfer in terms of charging and discharging in thermal energy storage system. The addition of CSA or zirconium increased specific heat of fiber-reinforced cement-based composite. Test results of this study could be actually used for the design of thermal energy storage system in concentrating solar power plants.

Effect of Cementitious Composite on the Thermal and Mechanical Properties of Fiber-Reinforced Mortars for Thermal Energy Storage (열에너지 저장을 위한 시멘트 복합재료의 섬유보강 모르타르의 열역학 특성에 관한 영향)

  • Yang, In-Hwan;Kim, Kyoung-Chul;Choi, Young-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.395-405
    • /
    • 2016
  • The thermal and mechanical properties of fiber-reinforced mortars for thermal energy storage were investigated in this paper. The effect of the combination of different cementitious composite on the thermal and mechanical characteristics of fiber-reinforced mortars was investigated. Experiments were performed to measure mechanical properties including compressive strength before and after thermal cycling and split tensile strength, and to measure thermal properties including thermal conductivity and specific heat. The results showed that the residual compressive strength of mixtures with OPC and graphite was greatest among the mixtures. Thermal conductivity of mixtures with alumina cement was greater than that of mixtures with OPC, indicating favor of alumina cement for charging and discharging in thermal energy storage system. The addition of zirconium into alumina cement increased specific heat of mixtures. Test results of this study could be used to provide information of material properties for thermal energy storage concrete.

Flexural toughness density of High Performance Fiber Reinforced Cementitious Composites (고인성 섬유보강 시멘트 복합재료의 휨인성 밀도)

  • Kim, Dong-Joo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.401-402
    • /
    • 2010
  • This research initially suggest flexural toughness density as a key parameter describing energy absorption capacity of High Performance Fiber Reinforced Cementitious Composites [HPFRCC] regardless of the size of specimen. Two types of high strength steel fibers, Hooked and Twisted fiber, were used in two types of flexural specimen ($100{\times}100{\times}350mm^3$ and $150{\times}150{\times}500mm^3$) to estimate and validate the flexural toughness density.

  • PDF

Fluorescence Characteristic Analysis for Fiber Detection in Sectional Image of Fiber Reinforced Cementitious Composite (섬유 보강 시멘트계 복합재료의 단면 이미지에서 섬유 검출을 위한 섬유 형광 특성 분석)

  • Lee, Bang-Yeon;Park, Jun-Hyung;Kim, Yun-Yong
    • Composites Research
    • /
    • v.23 no.3
    • /
    • pp.50-57
    • /
    • 2010
  • It is important to detect fibers in the sectional image of fiber reinforced cementitious composites (FRCC), since the fiber distribution is a crucial factor to predict or evaluate the mechanical performance of FRCC. In this paper, we investigated the fluorescence characteristics of Polyvinyl Alcohol (PVA) fibers, Polyethylene Terephthalate (PET) fibers, Polyethylene (PE) fibers, and Polypropylene (PP) fibers used in Engineered Cementitious Composites (ECC), which is a special kind of FRCC that incorporates synthetic fibers and exhibits extremely ductile behavior in uniaxial tension, to detect each fiber according to its type. Furthermore, optimum excitation and emission wavelengths were proposed on the basis of maximum difference of Relative Fluorescence Intensity (RFI) between two types of fibers used in the hybrid ECC. Optimum threshold values to discriminate two types of fibers using statistical tools were also proposed. Finally, images of four types of fibers obtained using a fluorescence microscope are compared.

Enhancing the Performance of Polypropylene Fiber Reinforced Cementitious Composite Produced with High Volume Fly Ash (폴리프로필렌 섬유로 보강된 하이볼륨 플라이애시 시멘트 복합재료의 성능 향상 기법)

  • Lee, Bang Yeon;Bang, Jin Wook;Kim, Yun Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.118-125
    • /
    • 2013
  • The synthetic fibers including Polyvinyl alcohol and Polyethylene fibers have been successfully used in the manufacture of high ductile fiber reinforced cementitious composites. Polypropylene (PP) fiber has also been used in composites, not for the purpose of achieving a high level of tensile ductility but to improve the fire resistance performance of concrete exposed to high temperatures. This paper discusses the method for enhancing the performance of composites supplemented with PP fiber. Five types of mixture proportions were designed with high volume fly ash for testing the performance of composites. Type I cement and fly ash F were used as binding materials. The water-to-binder ratio was 0.23~0.25, and the amount of PP fiber used was 2 vol%. Polystyrene bead were also used to increase the tensile ductility of composites. A series of experiments including slump, density, compression and uniaxial tension tests were performed to evaluate the performance of cementitious composites supplemented with PP fiber. From the test results, it was exhibited that the performance of composites supplemented with PP fiber can be enhanced by adopting the mechanics and statistics theory.

Influence of Number of Twist on Tensile Behavior of High Performance Fiber Reinforced Cementitious Composites with Twisted Steel Fibers (비틀림 강섬유의 비틀림 횟수가 고성능 섬유보강 시멘트 복합재료의 인장거동에 미치는 영향)

  • Kim, Dong-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.575-583
    • /
    • 2010
  • This research investigated the influence of the number of twist on single fiber pullout behavior of Twisted steel (T-) fiber and tensile behavior of high performance cementitious composites reinforced with the (T-) fibers (HPFRCC). Micromechanical pullout model for T- fibers has been applied to analytically investigate the influence of various fiber parameters including the number of twist on single fiber pullout behavior; and, to optimize the number of twist to generate larger pullout energy during fiber pullout without fiber breakage. In addition, an experimental program including single fiber pullout and tensile tests has been performed to investigate the influence of twist ratio experimentally. Two types of T- fiber with different twisted ratios, T(L)- fiber (6ribs/30 mm) and T(H)- fiber (18ribs/30 mm), were tested. T(L)- fiber produced higher equivalent bond strength (larger pullout energy) although T(H)- fiber produced higher pullout stress during pullout since T(H)- fiber showed fiber breakage during pullout. Tensile test results confirmed that T(L)- fiber in high strength mortar generates better tensile performance of HPFRCC, e.g., load carrying capacity, strain capacity and multiple micro-cracking behavior.