• Title/Summary/Keyword: 섬유보강 모르타르

Search Result 72, Processing Time 0.028 seconds

Evaluation of Field Applicability of Shotcrete for Fiber-net Integrated Tunnel Support System through Mock-up Test (목업 테스트를 통한 숏크리트용 섬유 그물망 일체형 터널 지보시스템의 현장 적용성 평가)

  • Kim, Jiyoung;Choi, Seongcheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.72-78
    • /
    • 2020
  • The present study developed shotcrete for fiber-net integrated tunnel support system, which consists of fiber-net support materials including netlike fiber and shotcrete and integration technology between support materials. In addition, in order to evaluate the field applicability of the developed tunnel support system and compare with the performance of steel fiber reinforced shotcrete, mock -up test was conducted on the mock -up structure. The test results show that in the case of shotcrete containing coarse aggregate(S20A5RP10-C), the excessive rebound rate occurred as the secondary shotcrete was dropped during construction due to the degradation in bond performance with fiber-net. Also, in the case of steel fiber reinforced shotcrete, the amount of cast shotcrete fell short of target value due to the fiber ball and the degradation of pumpability. On the other hand, the amount of cast mortar shotcrete(S20A5RP10-M) and the installation position of fiber-net were almost close to the target values, and the lower rebound rate occurred compared to the steel fiber reinforced shotcrete.

Plastic Shrinkage and Durability Characteristics of Fiber Reinforced Polymer-Modified Mortars (섬유보강 폴리머 시멘트 모르타르의 초기수축균열 및 내구특성)

  • Won Jong Pil;Jang Pil Sung;Kim Myeong Kyun;Kong Tae Woong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.156-159
    • /
    • 2004
  • The intention of this study is to reduce the plastic shrinkage of the polymer modified cement mortar using the PVA fiber. The durability of PVA fiber reinforced polymer cement mortar was also evaluated. The test results of PVA fiber reinforced polymer modified cement mortar were compared with plain polymer modified cement mortar(non-fiber). In conclusion, PVA fiber reinforced polymer modified cement mortar showed an ability to reduce the total crack area and maximum crack width significantly. Also. fiber reinforced polymer modified cement mortar show improved durability performance.

  • PDF

Evaluation of the Properties of Nylon Fiber Reinforced Concrete and the Performance in Plastic Shrinkage Cracking Reduction (나일론 섬유보강 콘크리트의 물리적 특성 및 모르타르 소성수축균열 제어성능 평가)

  • Kim Kwang-Ryeon;Kwon Yong Joo;Baek In Sang;Kim Yong Tae;Kim Byung Gi
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.575-578
    • /
    • 2005
  • Recently, various concrete reinforcing fibers have been used to reduce the plastic shrinkage cracking which occurs before the concrete hardens. In this study, the physical properties of nylon fiber reinforced concrete such as slump, air content, compressive strength and tensile strength were investigated. In addition, the performance of nylon fiber in the plastic shrinkage cracking reduction of mortar has been estimated in comparison with polypropylene fiber and cellulose fiber. Nylon fiber showed considerable advantages in terms of the workability of concrete and the plastic shrinkage cracking reduction of mortar compared with polypropylene fiber and cellulose fiber.

  • PDF

Mechanical Properties of Cement Mortar with Fibers (섬유보강 시멘트 모르타르의 기계적 특성)

  • 정민철;남기웅;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.5
    • /
    • pp.491-498
    • /
    • 1994
  • A fiber reinforced grouts were made using ordinary cement mortar and high effective water reducing agent (naphthalene sulfonate) were made by addition polypropylene fiber and carbon fiber. The physical properties of the grouts were investigated through the observation of the microstructure and the application of fracture mechanics. When the polypropylene fiber and carbon fiber were added respectively with 0.03 wt% to the grouts the compressive strength, flexural strength and Young's modulus were about 60∼63 MPa, 12.2∼12.4 MPa, 4.2∼4.8 GPa and 63∼68 MPa, 12.2∼12.6 MPa, 4.8∼5.1 GPa, and critical stress intensity were about 0.77∼0.82 MNm-1.5, and 0.80∼0.87 MNm-1.5 respectively, It can be considered that the strength improvement of fiber reinforced grouts (FRG) may be due to the removal of macropores and the increase of various fracture toughness, polymer fibril bridging and fiber bridging.

  • PDF

Flexural Experiments on Reinforced Concrete Beams Strengthened with ECC and High Strength Rebar (ECC와 고장력 철근으로 보강된 철근콘크리트 보의 휨 실험)

  • Cho, Hyun-Woo;Bang, Jin-Wook;Han, Byung-Chan;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.503-509
    • /
    • 2011
  • ECC is a micro-mechanically designed cementitious composite which exhibits tightly controlled crack width and strain hardening behavior in uniaxial tension while using a moderate amount of reinforcing fiber, typically less than 2% fiber volume fraction. Recently, a variety of applications of this material ranging from repair and retrofit of structures, cast-in-place structures, to precast structural elements requiring high ductility are developed. In the present study, a retrofitting method using ECC reinforced with high strength rebar was proposed to enhance load-carrying capacity and crack control performance of deteriorated reinforced concrete (RC) beams. Six beam specimens were designed and tested under a four-point loading setup. The flexural test revealed that load-carrying capacity and crack control performance were significantly enhanced by the use of ECC and high strength rebar. This result will be useful for practical field applications of the proposed retrofitting method.

A Study on the Development of an Automated Freeform Fabrication System and Construction Materials (자동화 적층 시공 시스템 및 재료 개발에 관한 연구)

  • Jeon, Kwang Hyun;Park, Min-Beom;Kang, Min-Kyung;Kim, Jung-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1665-1673
    • /
    • 2013
  • Recently, the interest and demand on free formed structure providing aesthetic value as well as functionality has been increasing. Formwork has numerous advantages such as high strength, convenience, accuracy and good quality of surface roughness. Nevertheless, it increases construction cost and period to build complex shapes. For these purpose, deposition construction systems such as Contour Crafting and Concrete Printing have been developed with active collaboration between university and industry by applying the rapid prototyping technology to the construction industry in USA and England. Since there has been no related research in Korea, the possibility of spin-off technology and its fusion cannot be expected. In this paper, design elements including mechanical system and control system related to automatic deposition construction system prototype for constructing a free curved structure without mold are described. As for an appropriate material for the system, fiber reinforced mortar was selected by experiments on compressive strength, fluidity, viscosity and setting time. By performing transfer and extrusion experiments, the possibility of the development of deposition construction system was demonstrated. Based on this research results, it is required to keep the automatic deposition construction system improve and extend it into the new application area in construction industry.

Properties and Prediction Model for Ultra High Performance Fiber Reinforced Concrete (UHPFRC): (I) Evaluation of Setting and Shrinkage Characteristics and Tensile Behavior (초고성능 섬유보강 콘크리트(UHPFRC)의 재료 특성 및 예측모델: (I) 응결 및 수축 특성과 인장거동 평가)

  • Yoo, Doo-Yeol;Park, Jung-Jun;Kim, Sung-Wook;Yoon, Young-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.307-315
    • /
    • 2012
  • Recently, ultra high performance fiber reinforced concrete (UHPFRC) having over 180 MPa compressive strength and 10 MPa tensile strength has been developed in Korea. However, UHPFRC represents different material properties with normal concrete (NC) and conventional high performance concrete (HPC) such as a high early age autogenous shrinkage and a rapid dry on the surface, because it has a low water-binder ratio and high fineness admixtures without coarse aggregate. In this study, therefore, to propose suitable experimental methods and regulations, and to evaluate mechanical properties at a very early age for UHPFRC, setting, shrinkage and tensile tests were performed. From the setting test results, paraffin oil was an appropriate material to prevent drying effect on the surface, because if paraffin oil is applied on the surface, it can efficiently prevent the drying effect and does not disturb or catalyze the hydration of cement. From the ring-test results, it was defined that the shrinkage stress is generated at the time when the graph tendency of temperature and strain of inner steel ring is changed. By comparing with setting test result, the shrinkage stress was firstly occurred as the penetration resistance of 1.5 MPa was obtained, and it was about 0.6 and 2.1 hour faster than those of initial and final sets. So, the starting time of autogenous shrinkage measurement (time-zero) of UHPFRC was determined when the penetration resistance of 1.5 MPa was obtained. Finally, the tensile strength and elastic modulus of UHPFRC were measured from near initial setting time by using a very early age tensile test apparatus, and the prediction models for tensile strength and elastic modulus were proposed.

Improvement and Evaluation of Seismic Performance of Reinforced High-Strength Concrete Beam-Column Joints with Advanced Reinforcing Detailings and High Ductile Fiber-Reinforced Mortar (고성능 배근상세 및 HDFRM을 활용한 고강도 철근콘크리트 보-기둥 접합부 내진성능 평가 및 개선)

  • Ha, Gee-Joo;Sin, Jong-Hak;Yi, Dong-Ryul;Hong, Kun-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.5-8
    • /
    • 2008
  • In this dissertation, experimental research was carried out to study the hysteretic behavior of reinforced high-strength concrete beam-column joints designed by high performance techniques, such as application of high-strength concrete, reducing of joint regions damage, moving of beam plastic hinge, advanced reinforcing detailings and High Ductile Fiber-Reinforced Mortar.(HDFRM) Specimens(HJCI), designed by the development of earthquake-resistant performance, moving of beam plastic hinge, and new design approach, were attained the moving of beam plastic hinge and developed significantly earthquake-resistant performance of such joints. Specimens(HJRP), designed with HDFRM, were indicated more stable hysteresis behavior, high load carrying capacity, and distributed crack pattern of specimens HJRP when compared to the control specimen.

  • PDF

An Experimental Study of Polypropylene Fiber for the Prevention of Explosive Spalling of Tunnel Concrete Lining (터널 콘크리트 라이닝 폭열 방지를 위한 폴리프로필렌 섬유 혼입율 분석 연구)

  • Kim, Nag Young;Shim, Jae Won;Shim, Jong Sung;Won, Jong Phil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.4
    • /
    • pp.323-333
    • /
    • 2005
  • Recently the fire is happening at the tunnel and underground - structure internationally. We are socially the economy the actual circumstances which serious loss is happening due to an fire occurrence when fire happened which is closed like tunnel and underground - structure, the collapse from the burglar degradation of strength of tunnel concrete lining and human life damage happen. It causes big problem while the long time disconnects a traffic network. While the fire happened in this research at the tunnel, the paper construct a basis data to deduce the specification regulation about stability of tunnel concrete lining. In this paper, the experiment was carried out for the prevention of explosive spalling of tunnel to use a reinforced Polypropylene concrete which mixes a Polypropylene which are known for the thing by being efficient at a protect of explosive spalling of the concrete. According to the firproof test result of reinforced Polypropylene admixture mortar, Polypropylene admixture of prevention of explosive spalling analyzed 0.2%-0.25%.

  • PDF

A Evaluation on the Field Application of Ductile Fiber Reinforced Cement Composites (고인성 섬유보강 시멘트 복합체의 현장 적용성 평가)

  • Ryu, Gum-Sung;Koh, Kyung-Taek;Park, Jung-Jun;Kang, Su-Tae;Kim, Sung-Wook;Park, Sung-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.941-944
    • /
    • 2008
  • Various ductile fiber reinforced cement composite(DFRCC) including large quantities of PVA fiber or steel fiber have been developed recently and studies to find applications in diverse domains are currently conducted actively. Regard to economical efficiency, DFRCC becomes competitive when applied as special elements and repair material with small quantities rather than the casting of large volume for the main body of structures in field. The authors have developed FRP-DFRCC composite slab for bridges and a wet spraying repair technique using DFRCC. In case of the application on FRP-DFRCC composite slab, it was found that there was no problems the structure and durability of it after passed 3 months. And in case of the application on the application of the deteriorated sewage box that passed 20 years, it was found that there was no difference the repair performance between domestic PVA fiber and the Japan. Therefore, DFRCC using PVA fiber, the concrete structures can be increased to performance and secured the economical efficiency.

  • PDF