• Title/Summary/Keyword: 섬유물성

Search Result 979, Processing Time 0.033 seconds

Effects of Treatment of Cellulase and Alkali on Physical Properties and Dyeability of Ramie/Man-Made Fiber Mixture Fabrics (셀룰라아제와 알칼리 처리에 의한 저마/인조섬유 교직물의 물성과 염색성 변화)

  • 김순심;최종명
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.5
    • /
    • pp.891-900
    • /
    • 2001
  • The purpose of this study were to evaluate the physical properties and dyeability of cellulase and alkali(NaOH, KOH) treated ramie/man-made fiber mixture fabrics. The mixture fabrics were plain weave made by rayon and polyester fiber as warp yarn, and ramie as weft yarn. The crease resistance, drape, tensile strength, and water absorbancy were measured for test fabrics. The K/S value of dyed fabrics were calculated using color difference meter. Also colorfastness to washing and sunlight of dyed fabrics were evaluated. The results obtained from this study were as follows: Thickness and weight per unit area of alkali treated two mixture fabrics(rayon/ramie, polyester/ramie) increased compared to those of untreated fabrics, but cellulase treated fabrics did not changed a little. And alkali treated rayon/ramie mixture fabrics showed more change than polyester/ramie mixture fabrics on the thickness and weight. Tensile strength and water absorbancy of cellulase treated fabrics decreased compared to those of untreated, but crease resistance increased. Crease resistance, tensile strength(warp direction), water absorbancy and drape of NaOH treated rayon/ramie mixture fabrics decreased compared to those of untreated, but tensile strength(weft direction) increased. Water absorbancy and drape of NaOH treated polyester/ramie mixture fabrics decreased compared to those of untreated, but crease resistance and tensile strength(weft direction) increased. Tensile strength of KOH treated two mixture fabrics increased compared to that of untreated, but water absorbancy and drape decreased. Total hand of cellulase and alkali treated rayon/ramie mixture fabrics was improved compared to untreated. Dyeability of treated mixture fabrics was increased compared to untreated.

  • PDF

Study on the Mechanical Properties of Polyketone Fiber according to Coating Process for Technical Textile (산업용 폴리케톤 섬유의 코팅 가공에 따른 기계적 물성에 관한 연구)

  • Kim, Sang Yong;Jeon, Jae Woo;Kwak, Dong Sub;Lee, Won;Lee, Deuk Jin;Whang, Sun Dong;Do, Sung Jun
    • Textile Coloration and Finishing
    • /
    • v.27 no.4
    • /
    • pp.334-339
    • /
    • 2015
  • Polyketone fiber, a newly developed high strength fiber, has a tenacity and modulus similar to the paramid fiber, and can be used for reinforcing mechanical rubber goods(MRG), such as tires, hoses, and technical textiles. In addition, aliphatic polyketone, which has excellent strength, modulus, chemical stability and reasonable price, is being developed only in South Korea. It will be expected for replacement of super fiber such as aramids and increasing the technical textile market share. This paper surveys the mechanical properties of polyketone fiber yarn for technical textiles. For this purpose, two kinds of yarns are prepared, mechanical properties of coated and uncoated polyketone yarns such as tensile strength, elongation and modulus were examined before and after weather resistance test(temperature $60^{\circ}C$, humidity 60%, amount of power $0.67w/m^2$). The differences of mechanical properties between uncoated and coated yarns for high functional technical textiles and composite materials are estimated through this study.

마직물의 태에 관한 연구 -주관적 태 평가 방법과 객관적 태 측정을 통한 산출식의 개발을 중심으로-

  • 박성혜;유효선
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1999.03a
    • /
    • pp.219-219
    • /
    • 1999
  • 마직물은 통기성, 흡수성, 투습성이 좋고 건조가 빠른 편이므로 여름철 직물로 많이 사용되어 왔다. 마직물은 또한 뻣뻣하며 몸에 감기지 않고 촉감이 깔깔하여 시원한 느낌을 주며 다른 직물에 비해 강직하고 표면이 거칠고 드레이프성이 떨어지는 등의 독특한 태를 가지고 있다. KES-F 시험기에 의해 여러 물성량들을 종합적으로 계측할 수 있게 됨에 따라 의복의 착용감에 만족을 주는 소재의 성능에 대한 연구가 종래의 주관적평가에서 KES-F 시스템을 이용하여 객관적으로 태를 예측하는 방법으로 진행되고 있다. 그러나 태를 평가하는 객관적 방법에서는 일반적으로 Kawabata와 Niwa에 의해 만들어진 평가식들이 주로 사용되나 이런 식들은 주로 모직물이나 합성섬유직물들을 평가하기에는 적합하지만 마직물의 독특한 태를 평가하기에는 부족하다고 생각된다. 마직물의 태가 기존의 객관적 평가방법만으로는 규명되지 않기 때문에 주관적 태평가방법을 아울러 실시해야 할 필요가 있다고 생각된다. 따라서 본 연구에서는 마직물의 태를 평가하는 방법의 하나로 주관적 평가척도를 개발하고 이 척도를 사용하여 마직물의 주관적인 태 특성을 살펴보았다. 그리고 KES-FB 시스템을 사용한 객관적인 태를 측정하여 주관적 평가치와 객관적 측정치로부터 태 평가의 산출식을 유도하였다. 실험에 사용된 직물은 혼방률, 밀도, 두께 등이 다양한 암, 저마 그리고 마혼방직물과 한산모시, 중국마, 신합섬 직물 등 총 54종을 사용하였다. 마직물의 주관적 태 평가를 위해 26문항의 형용사쌍으로 구성된 9점의 의미미분척도를 개발하였으며 이 척도를 사용해 주관적 평가를 실시하였다. 또 객관적 평가를 위해 KES-FB 시스템을 통해 역학적 특성치를 구하였다. 주관적 평가를 실시한 결과 마직물의 태에 영향을 미치는 7개의 요인이 추출되었다. 이 요인들은 표면성질, 신축성/드레이프성, 중량감, 강연성, 회복성, 수분특성, 밀도감이었으며, 요인들로 설명되는 누적분산값은 67.18%였다.주관적 평가의 결과와 객관적 평가 결과를 이용해 마직물의 태를 평가하는 산출식을 제시하였다. 태 평가치의 경우 16가지 특성치를 모두 넣는 방법과 stepwise 방법, 또 Kawabatark 사용한 순차적 군 회귀법의 세가지 방법의 회귀식 중 16가지 특성치를 모두 넣는 방법의 결정계수가 가장 높았다.

  • PDF

Evaluation of the Cryogenic Characteristics of Composite/Aluminum Ring Specimens (복합재/알루미늄 링 시편의 극저온 특성 평가)

  • 김명곤;강상국;김천곤;공철원
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.9
    • /
    • pp.25-32
    • /
    • 2006
  • In this study, the characteristics of filament wound composite/aluminum ring specimens were investigated at cryogenic temperature. The ring specimens were manufactured using carbon fibre and Type B epoxy resin which had been developed for cryogenic use. As a result of measuring thermal strains at -150℃, it was found that compressive thermal stress was induced in composite part on the contrary, tensile thermal stress in aluminum part which was about 32% of yield stress and in turn, caused aluminum to be yielded at lower load level. In addition, Thermal strains which resulted from finite element analysis showed good agreement with those of the experiment. After 6 mechanical loading cycles had been applied to the ring specimen at -150℃, tensile tests were performed at -150℃ using a split disk fixture. As a result, it was shown that composite strength in a liner-composite tank structure which is for the use of cryogenic propellant tank would be decreased by auto-frettage pressure which is applied to it.

Chemorheological Behavior of Cyanate Ester Resin and Properties of Carbon Fiber Reinforced Polymer Composites (시아네이트 에스터 수지의 화학유변학적 거동 및 탄소섬유강화 고분자 복합재료의 물성)

  • Na, Hyo Yeol;Yoon, Byung Chul;Kim, Seung Hwan;Lee, Seong Jae
    • Elastomers and Composites
    • /
    • v.48 no.2
    • /
    • pp.133-140
    • /
    • 2013
  • Carbon fiber reinforced polymer (CFRP) composites consist of carbon fibers in a polymer matrix. Recently, CFRP composites having high thermal stability and low outgassing are finding their use in high performance materials for aerospace and electronics applications under high temperature and high vacuum conditions. Cyanate ester resin is one of the most suitable matrix resins for this purpose. In this study, proper combination of cyanate ester and catalyst, curing behavior, and cure cycle were determined by chemorheology. Optimum condition was found to be catalyst content of 100 ppm and curing temperature of $150^{\circ}C$. Thermal stability and outgassing of cured resin composition were analyzed and the results showed thermal decomposition temperature of $385^{\circ}C$ and total mass loss of 0.29%. The CFRP prepregs and subsequent composites were fabricated by predetermined resin composition and the cure condition. Tensile moduli of the composites were compared with theoretical models and the results were very consistent.

Evaluation of Impact Damage and Residual Compression Strength after Impact of Glass/Epoxy Laminate Composites for Lightweight Bogie Frame induced by Ballast-Flying Phenomena (도상자갈 비산에 의한 경량 대차프레임 적용 유리/에폭시 적층 복합재의 충격손상 및 충격 후 잔류압축강도 평가)

  • Goo, Jun-Sung;Shin, Kwang-Bok;Kim, Jung-Suk
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.2
    • /
    • pp.109-115
    • /
    • 2012
  • In order to evaluate the effect of structural degradation of a GFRP composite bogie frame due to ballast-flying phenomena, the impact test and residual compression test after impact was conducted for glass fiber/epoxy 4-harness satin woven laminate composites applied to skin part of a bogie frame. The impact test was performed using a instrumented impact testing system with energy levels of 5J, 10J, and 20J, and the impactor was designed to have various ballast shapes such as sphere, cube, and cone to consider the ballasted track environments. The residual compression strength was tested to evaluate the degradation of mechanical properties of impact-damaged laminate composites. The results showed that the damage area and the degradation of residual compressive strength after impact for laminate composites was increased with increase of impact energy for all ballast shapes, and was particularly most influenced by ballast shape of cone.

Experimental Testing of Curved Aluminum Honeycomb/CFRP Sandwich Panels (곡면형상의 알루미늄 하니콤/CFRP 샌드위치 패널에 관한 실험적 연구)

  • Roy, Rene;Park, Yong-Bin;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.85-90
    • /
    • 2013
  • This paper presents the fabrication and 3-point flexion testing of carbon fiber reinforced polymer (CFRP) composite face/aluminum honeycomb core sandwich panels. Specimen sandwich panels were fabricated with three honeycomb types (3.18 mm, 4.76 mm, and 6.35 mm cell size) and three panel radii (flat, r = 1.6 m, r = 1.3 m). The curved sandwiches were fabricated normally with the core in the W-direction. The tensile mechanical properties of the CFRP $2{\times}2$ twill fabric face laminate were evaluated (modulus, strength, Poisson's ratio). The measured values are comparable to other CFRP fabric laminates. The flat sandwich 3-point flexion test core shear strength results were 11-30% lower than the manufacturer published data; the test set-up used may be the cause. With a limited sample size, the 1.3 meter panel curvature appeared to cause a 0.8-3.8% reduction in ultimate core shear strength compared to a flat panel.

Development of 3D Woven Preform π-beam based on T-beam Made of Laminated Composites (적층복합재료 T-빔 기반의 3차원 직조 프리폼 π-빔 개발)

  • Park, Geon-Tae;Lee, Dong-Woo;Byun, Joon-hyung;Song, Jung-il
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.115-124
    • /
    • 2020
  • Laminate composites, especially Carbon fiber-reinforced composites are wide used in various industry such as aerospace and automotive industry due to their high specific strength and specific stiffness. However, the laminate composites has a big disadvantage that delamination occurs because the arrangement of the fibers is all arranged in the in-plane direction, which limits the field of application of the laminate composites. In this study, we first developed a laminate composites T-beam in which π-beam and flat plate were combined and optimized the design parameters through structural analysis and mechanical tests. Afterwards, 3D weave preform T-beam was developed by applying the same design parameters of laminate composites T-beams, and improved mechanical strength was achieved compared to laminated structures. These findings are expected to be applicable to existing laminated composite structures that require increased strength.

Structural Analysis of Composite Partition Panel according to Weaving Methods (직조 방법에 따른 복합재 파티션 패널의 구조 해석)

  • Kang, Ji Heon;Kim, Kun Woo;Jang, Jin Seok;Lee, Jae Jin;Mun, Ji Hun;Kang, Da Kyung;Ahn, Min Su;Lee, Jae Wook
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.140-146
    • /
    • 2020
  • The purpose of this paper is to examine the possibility of weight reduction by changing the partition panel of vehicle from an existing aluminum material to carbon fiber reinforced plastics. Three weaving methods (plain, twill and satin) were used in the manufacture of composite materials, and they were produced and tested to derive their material properties. The analysis model of composite partition panel for torsional conditions was developed and the structural stability and system stiffness were evaluated according to Tsai-Hill failure criteria. With design variables for fiber orientation angles and stacking sequence, evolutional optimal algorithm was performed and as the results, the optimal composite partition panel was designed. In addition, the structural analysis results for strength and specific stiffness were compared with aluminum partition panels and composite partition panels to verify the possibility of weight reduction.

Rheological Properties of Dough Added with Barley Bran (보리등겨 첨가 반죽의 물성변화)

  • Choi, Ung-Kyu;Yoo, Byung-Hyuk;Son, Dong-Hwa;Kwon, Dae-Jun;Kim, Mi-Hyang;Kim, Young-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.751-756
    • /
    • 2005
  • Effect of barley bran flour on bread quality was investigated. With addition of barley bran flour, crude protein and ash contents of bread increased, and color of crumb and crust became darker than control group made with pure wheat flour. Content of dietary fiber in bread made with 5% barley bran flour was twofold higher than that of control group. Hardness of bread increased and volume decreased in proportion to bran content. Sensory qualities of 5% barley bran flour-added group and control group were not significantly different, but decreased in 10 and 15% barley bran flour-added groups, revealing optimal content of barley bran flour to be 5%.