• Title/Summary/Keyword: 섬유강화 탄화규소 복합재료

Search Result 10, Processing Time 0.025 seconds

Application and Technology on Development of High Temperature Structure SiCf/SiC Composite Materials (고온용 SiCf/SiC 복합재료개발 기술과 활용방향)

  • Yoon, Han-Ki;Lee, Young-Ju;Park, Yi-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.1016-1021
    • /
    • 2008
  • The development of the first wall whose major function is to withstand high neutron and heat fluxes is a critical path to fusion power. The materials database and the fabrication technology are being developed for design, construction and safety operation of the fusion reactor. The first wall was designed to consist of the plasma facing armor, the heat sink layer and the supporting plates. and Porous materials are of significant interest due to their wide applications in catalysis, separation, lightweight structural materials. In this study, the characteristics of the sintering process of SiC ceramic, $SiC_f$/SiC composite and porous $C_f$/SiC composite have been introduced order to study of the fusion blanket materials and heat-exchange pannel.

Development of Continuous SiC Fiber Reinforced Magnesium Composites Using Liquid Pressing Process (액상가압성형 공정을 이용한 SiC 연속섬유 강화 마그네슘 복합재료 개발)

  • Cho, Seungchan;Lee, Donghyun;Lee, Young-Hwan;Shin, Sangmin;Ko, Sungmin;Kim, Junghwan;Kim, Yangdo;Lee, Sang-Kwan;Lee, Sang-Bok
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.247-250
    • /
    • 2020
  • In this study, the possibility of manufacturing a magnesium (Mg) composites reinforced with continuous silicon carbide (SiC) fibers was examined using a liquid pressing process. We fabricated uniformly dispersed SiC fiberAZ91 composites using a liquid phase pressing process. Furthermore, the precipitates were controlled through heat treatment. As a continuous Mg2Si phase was formed at the interface between the SiC fiber and the AZ91 matrix alloy, the interfacial bonding strength was improved. The tensile strength at room temperature of the prepared composite was 479 MPa, showing excellent mechanical properties.

Liquid Silicon Infiltrated SiCf/SiC Composites with Various Types of SiC Fiber (다양한 SiC 섬유를 적용한 실리콘 용융 침투 공정 SiCf/SiC 복합재료의 제조 및 특성 변화 연구)

  • Song, Jong Seob;Kim, Seyoung;Baik, Kyeong Ho;Woo, Sangkuk;Kim, Soo-hyun
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.77-83
    • /
    • 2017
  • Liquid silicon infiltration, which is one of the methods of producing fiber reinforced ceramic composites, has several advantages such as low fabrication cost and good shape formability. In order to confirm LSI process feasibility of SiC fiber, $SiC_f/SiC$ composites were fabricated using three types of SiC fibers (Tyranno SA, LoxM, Tyranno S) which have different crystallinity and oxygen content. Composites that were fabricated with LSI process were well densified by less than 2% of porosity, but showed an obvious difference in 3-point bending strength according to crystallinity and oxygen content. When composites in LSI process was exposed to a high temperature, crystallization and micro structural changes were occurred in amorphous SiOC phase in SiC fiber. Fiber shrinkage also observed during LSI process that caused from reaction in fiber and between fiber and matrix. These were confirmed with changes of process temperature by SEM, XRD and TEM analysis.

Effects of Sintering Temperature on Fabrication Properties of LPS-SiC Ceramics (LPS-SiC 세라믹스 제조특성에 미치는 소결온도의 영향)

  • Park, Yi-Hyun;Jung, Hun-Chae;Kim, Dong-Hyun;Yoon, Han-Ki;Kohyam, Akira
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.204-209
    • /
    • 2004
  • SiC materials have been extensively studied for high temperature components in advanced energy system and advanced gas turbine. However, the brittle characteristics of SiC such as low fracture toughness and low strain-to fracture still impose a severe limitation on practical applications of SiC materials. For these reasons, $SiC_f/SiC$ composites can be considered as a promising for various structural materials, because of their good fracture toughness compared with monolithic SiC ceramics. But, high temperature and pressure lead to the degradation of the reinforcing fiber during the hot pressing. Therefore, reduction of sintering temperature and pressure is key requirements for the fabrication of $SiC_f/SiC$ composites by hot pressing method. In the present work, Monolithic LPS-SiC was fabricated by hot pressing method in Ar atmosphere at 1760 $^{\circ}C$, 1780 $^{\circ}C$, 1800 $^{\circ}C$ and 1820 $^{\circ}C$ under 20 MPa using $Al_2O_3-Y_2O_3$ system as sintering additives in order to low sintering temperature. The starting powder was high purity ${\beta}-SiC$ nano-powder with an average particle size of 30 nm. Monolithic LPS-SiC was evaluated in terms of sintering density, micro-structure, flexural strength, elastic modulus and so on. Sintered density, flexural strength and elastic modulus of fabricated LPS-SiC increased with increasing the sintering temperature. In the micro-structure of this specimen, it was found that grain of sintered body was grown from 30 nm to 200 nm.

  • PDF

Effect of Surface Treated SiC on Thermal Stability and Mechanical Interfacial Properties of Carbon Fiber/Epoxy Resin Composites (탄소섬유 강화 에폭시 수지 복합재료의 열안정성 및 기계적 계면특성에 미치는 SiC 표면처리 영향)

  • 박수진;오진석;이재락;이경엽
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.25-31
    • /
    • 2003
  • In this work the effect of surface treated SiC on thermal stability and mechanical interfacial properties of carbon fiber/epoxy resin composites. The surface properties of the SiC were determined by acid/base values and contact angles. The thermal stabilities of carbon fiber/epoxy resin composites were investigated by TGA. The mechanical interfacial properties of the composites were studied in ILSS, critical stress intensity factor ($\textrm{K}_{IC}$), and critical strain energy release rate($\textrm{G}_{IC}$) measurements. As a result, the acidically treated SiC(A-SiC) had higher acid value than untreated SiC(V-SiC) or basically treated SiC(B-SiC). According to the contact angle measurements, it was observed that chemical treatments led to an increase of surface free energy of the SiC surfaces, mainly due to the increase of the specific(polar) component. The mechanical interfacial properties of the composites including ILSS, $\textrm{K}_{IC}$, and $\textrm{G}_{IC}$ had been improved in the specimens treated by chemical solutions. These results were explained that good wetting played an important role in improving the degree of adhesion at interfaces between SiC and epoxy resin matrix.

Thermal and Mechanical Evaluation of Environmental Barrier Coatings for SiCf-SiC Composites (SiCf-SiC 복합재료의 내환경 코팅 및 열, 기계적 내구성 평가)

  • Chae, Yeon-Hwa;Moon, Heung Soo;Kim, Seyoung;Woo, Sang Kuk;Park, Ji-Yeon;Lee, Kee Sung
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.84-93
    • /
    • 2017
  • This study investigates thermal and mechanical characterization of environmental barrier coating on the $SiC_f-SiC$ composites. The spherical environmental barrier coating (EBC) powders are prepared using a spray drying process for flowing easily during coating process. The powders consisting of mullite and 12 wt% of Ytterbium silicate are air plasma sprayed on the Si bondcoat on the LSI SiC fiber reinforced SiC composite substrate for protecting the composites from oxidation and water vapor reaction. We vary the process parameter of spray distance during air plasma spray of powders, 100, 120 and 140 mm. After that, we performed the thermal durability tests by thermal annealing test at $1100^{\circ}C$ for 100hr and thermal shock test from $1200^{\circ}C$ for 3000 cycles. As a result, the interface delamination of EBC never occur during thermal durability tests while stable cracks are prominent on the coating layer. The crack density and crack length depend on the spray distance during coating. The post indentation test indicates thermal tests influence on the indentation load-displacement mechanical behavior.

Study on Improvement of Mechanical Property, Oxidation and Erosion Resistance of SiC Matrix Ceramic Composites Reinforced by Hybrid Fabric Composed of SiC and Carbon Fiber (탄화규소섬유와 탄소섬유 하이브리드 직물을 강화재로 한 SiC 매트릭스 세라믹복합재의 기계적물성, 산화 및 삭마 저항성 개선 연구)

  • Yoon, Byungil;Kim, Myeongju;Kim, Jaesung;Kwon, Hyangjoo;Youn, Sungtae;Kim, Jungil
    • Composites Research
    • /
    • v.32 no.3
    • /
    • pp.148-157
    • /
    • 2019
  • In this study, $C_f/SiC$, $SiC_f/SiC$ and $C_f-SiC_f/SiC$ ceramic composites reinforcing carbon fiber, SiC fiber and hybrid fiber were fabricated by hybrid TGCVI and PIP process. After the thermal shock cycle, 3-point bending and Oxy-Acetylene torch test, their mechanical behavior, oxidation and erosion resistance were evaluated. The $C_f/SiC$ composite showed a decrease in mechanical property along with increasing temperature, a pseudo-ductile fracture mode and a large quantity of erosion. The $SiC_f/SiC$ composite exhibited stronger mechanical property and lower erosion rate compared to the $C_f/SiC$, but brittle fracture mode. On the other hand, hybrid type of $C_f-SiC_f/SiC$ composite gave the best mechanical property, more ductile failure mode than the $SiC_f/SiC$, and lower erosion rate than the $C_f/SiC$. During the Oxy-Acetylene torch test, the $SiO_2$ formed by reaction of the SiC matrix with oxygen prevented further oxidation or erosion of the fibers for $C_f-SiC_f/SiC$ and $SiC_f/SiC$ composites particularly. In conclusion, if a hybrid composite with low porosity is prepared, this material is expected to have high applicability as a high temperature thermo-structural composite under high temperature oxidation atmosphere by improving low mechanical property due to the oxidation of $C_f/SiC$ and brittle fracture mode of $SiC_f/SiC$ composite.

Effect of Fiber Dispersion on Mechanical Strength of SiCf/SiC Composites (강화 섬유의 분산도가 SiCf/SiC 복합소재의 기계적 강도에 미치는 영향)

  • Ji Beom Choi;Soo-Hyun Kim;Seulhee Lee;In-Sub Han;Hyung-Joon Bang;Seyoung Kim;Young-Hoon Seong
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.180-185
    • /
    • 2023
  • This paper investigates the impact of fiber dispersion on the internal structure and mechanical strength of SiCf/SiC composites manufactured using spread SiC fibers. The fiber volume ratio of the specimen to which spread SiC fiber was applied decreased by 9%p compared to the non-spread specimen, and the resin slurry impregnated between the fibers more smoothly, resulting in minimal matrix porosity. In order to compare the fiber dispersion of each specimen, a method was proposed to quantify and evaluate the separation distance between fibers in composite materials. The results showed that the distance between fibers in the spread specimen increased by 2.23 ㎛ compared to the non-spread specimen, with a significant 42.6% increase in the distance between fiber surfaces. Furthermore, the 3pt bending test demonstrated a 49.3% higher flexural strength in the spread specimen, accompanied by a more uniform deviation in test data. These findings highlight the significant influence of SiC fiber dispersion on achieving uniform densification of the SiCf/SiC matrix and increasing mechanical strength.

A Review of SiCf/SiC Composite to Improve Accident-Tolerance of Light Water Nuclear Reactors (원자력 사고 안전성 향상을 위한 SiCf/SiC 복합소재 개발 동향)

  • Kim, Daejong;Lee, Jisu;Chun, Young Bum;Lee, Hyeon-Geun;Park, Ji Yeon;Kim, Weon-Ju
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.161-174
    • /
    • 2022
  • SiC fiber-reinforced SiC matrix composite is a promising accident-tolerant fuel cladding material to improve the safety of light water nuclear reactors. Compared to the current zirconium alloy fuel cladding as well as metallic accident-tolerant fuel cladding, SiC composite fuel cladding has exceptional accident-tolerance such as excellent structural integrity and extremely low corrosion rate during severe accident of light water nuclear reactors, which reduces reactor core temperature and delays core degradation processes. In this paper, we introduce the concept, technical issues, and properties of SiC composite accident-tolerant fuel cladding during operation and accident scenarios of light water nuclear reactors.