• Title/Summary/Keyword: 섬유강화 콘크리트

Search Result 68, Processing Time 0.029 seconds

Characteristics of Burst Pressure and Abrasion Resistance of Concrete Hose with Aramid Fiber Reinforcement and Rubber Composition (아라미드 섬유강화 및 고무조성에 따른 콘크리트 도킹호스의 파열압력과 내마모도 특성)

  • Kim, Yong-Hwan;Lee, Seung-Hwan;Sung, Il-Kyung;Lee, Yu-wool;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.105-110
    • /
    • 2018
  • A concrete docking hose of pump car's boom pipe line have been used in many construction sites. They are long structures with continuous cornering, similar to a trunk of the elephant, characterized by a very high pressure resistance of 20MPa. They need flexible materials and structure in order to move the hose smoothy. But commercial concrete hose is hard to handle and heavy owing to adaption of steel reinforcement. In this study, it is tried an experimental approach to the characteristic of inner rubber layer and abrasion resistance. Also, we are investigated the bursting pressure according to the reinforcement of the hose and propose the usefulness of the hose reinforced with high strengthened aramid fiber.

Development of Hybrid Fiber Reinforced Plastics Rebar for Concrete Structure by the Braidtrusion Process (브레이드 투루젼법에 의한 콘크리트 구조물용 하이브리드 섬유강화 복합재료 리바 개발)

  • 최명선;한길영;이동기;심재기
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.199-205
    • /
    • 2001
  • This paper describes the design methodology, manufacturing process, rebar tensile and bending properties. Braidtrusion is a direct Composite fabrication technique utilizing an in-line braiding and pultrusion process. The produced Composite rebar exhibits ductile stress-strain behavior similar to that of conventional steel bar. Various rebar diameters ranging from modeling scale(3m) to full-scale prototype of 9.5mm have been produced Glass Fiber Reinforced Plastics(GFRP) rebar were successfully fabricated at $\phi$8.5mm and $\phi$9.5mm nominal diameters of soild and hollow type using a braidtrusion process. Tensile and bending specimens were tested and compared with behavior of stress-strain of GFRP rebar and steel bar.

  • PDF

Simulation of Dynamic Crack Propagation in Uni-Directional and Cross-Ply Fiber-Reinforced Composites (단일방향 및 크로스-플라이 섬유강화 복합체에서의 동적균열 전파모사)

  • Hwang, Chan-Gyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.383-390
    • /
    • 2008
  • This paper presents the formulation and numerical implementation of a spectral scheme specially developed to simulate dynamic fracture events in unidirectional and cross-ply fiber-reinforced composites. The formulation is based on the spectral representation of the transversely isotropic elastodynamic relations between the traction stresses along the fracture plane and the resulting displacements. Example problem of dynamically propagating cracks in fiber-reinforced composites is investigated and compared with reference solutions available in the literature and/or experimental observations. This scheme can be directly applicable to the interfacial fracture analysis in the FRP reinforced concrete structures.

Structural Behavior of Flexurally Reinforced FRP-Concrete Composite Compression Member with FRP (FRP로 휨보강된 FRP-콘크리트 합성압축재의 구조적 거동)

  • Park, Joon-Seok;Joo, Hyung-Joong;Nam, Jeong-Hun;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.10-16
    • /
    • 2010
  • In construction industries, new construction materials are needed to overcome some problems associated with the use of conventional construction materials due to the change of environmental and social requirements. Accordingly, the requirements to be satisfied in the design of civil engineering structures are diversified. As a new construction material in the civil engineering industries, fiber reinforced polymeric plastic (FRP) has a superior corrosion resistance, high specific strength/stiffness, etc. Therefore, such properties can be used to mitigate the problems associated with the use of conventional construction materials. Nowadays, new types of bridge piers and marine piles are being studied for new construction. They are usually made of concrete filled fiber reinforced polymeric plastic tubes (CFFT). In this paper, a new type of FRP-concrete composite pile which is composed of reinforced concrete filled FRP tube (RCFFT) is proposed to improve compressive strength as well as flexural strength. The load carrying capacity of proposed RCFFT compression member is discussed based on the result of experimental and analytical investigations.

  • PDF

Experimental and Analytical Study on the Fracture Strength of RC Beams Strengthened for Flexure with GFRP Involving the Debonding of FRP Reinforcement (보강재 박리에 의한 GFRP 휨 보강 RC보의 파괴강도에 관한 실험 및 해석적 연구)

  • Lee, Jong-Han;Kwon, Hyuck Bae;Kang, Su Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.39-48
    • /
    • 2015
  • Reinforced concrete (RC) structures strengthened with FRP materials would cause the loss of the reinforcing effect and the sudden failure of the structure due to the debonding of FRP. The debonding fracture strength of the FRP-strengthened concrete structures has been evaluated using the same strength method as applied in RC structures based on the debonding strain of FRP. However, the values of the FRP debonding strain are different according to design guidelines. Thus, this study carried out an experimental study on RC beams reinforced with GFRP and evaluated the debonding fracture strength of the strengthened beams from each design guideline. Since the debonding failure occurs prior to reaching the ultimate value of concrete compressive strain, this study accounts for the nonlinear stress distribution of concrete. This study also proposed equations that can evaluate the debonding strength of GFRP-strengthened RC beams with similar safety to the ultimate flexural strength of non-strengthened RC beams.

Heat Conduction Analysis and Fire Resistance Capacity Evaluation of Reinforced Concrete Beams Strengthened by FRP (FRP로 보강된 철근콘크리트보의 열전도해석 및 내화성능 평가)

  • Lim, Jong-Wook;Park, Jong-Tae;Kim, Jung-Woo;Seo, Soo-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.1-8
    • /
    • 2018
  • The object of this paper is to find the characteristics of fire proof materials through an analytical method and to suggest a proper approach for fire-proof design of reinforced concrete beam strengthened with fiber reinforced polymer (FRP). Heating tests for fire-proof materials were conducted and the thermal conductivities and specific heats of them were simulated through finite element analyses. In addition, a finite element analysis on the beam specimen strengthened with FRP under high temperature, which was conducted by previous researchers, was performed and the analytical result was compared with test result. And then the compatibility of the analytical approach was evaluated. Finally, the heat resistance characteristic of RC beam strengthened with FRP was analyzed by the proposed analytical method and the strength decrease of the beam due to the high temperature was evaluated. From the comparison with analytical and test result, it was found that the heat transfer from outside to inside through the fire-proof materials can be suitably simulated by using the proposed analytical approach.

An Experimental Study for Flexural Failure Behavior of Composite Beam with Cast-in-place High Strength Concrete and GFRP Plank Using As a Permanent Formwork and Tensile Reinforcement (유리섬유강화폴리머 판을 영구거푸집 및 인장 보강재로 활용한 현장타설 고강도콘크리트 합성보의 휨 파괴거동에 관한 실험적 연구)

  • Um, Chan Hee;Yoo, Seung Woon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1015-1024
    • /
    • 2015
  • An experiment of composite beam was performed which utilized glass fiber reinforced polymer (GFRP) plank as the permanent formwork with cast-in-place high strength concrete. This research analyzed the flexural failure behavior of composite beam by setting the sand coated at GFRP bottom surface, the perforation and interval of the GFRP plank web, and the width of the top flange as the experimental variables. As a result of the experiments for effectiveness of sand attachment in case of not perforated web, approximately 43% higher ultimate load value was obtained when the sand was coated than not coated case. For effectiveness of perforation and interval of gap, approximately 23% higher maximum load value was seen when interval of the perforation gap was 3 times and the fine aggregate was not coated, and approximately 11% higher value was observed when the perforation gap was 5 times on the coated specimen. For effectiveness of top flange breadth, the ultimate load value was approximately 12% higher in case of 20mm than 40mm width.

Characteristics of Kevlar-Glass fiber reinforced plastic for Concrete Structure by the Braidtrusion process (브레이드 투루젼법에 의한 콘크리트 구조물용 케블라-유리섬유 강화 복합재료 리바 특성)

  • 최명선;곽상묵;배시연;이동기;심재기;한길영
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.48-52
    • /
    • 2002
  • This paper describes the need for a ductile Fiber Reinforced Plastic(FRP) reinforcement for Concrete Structures. Using the material hybrid and geometric hybrid, it is demonstrated that the pseudo-ductility Characteristic can be generated in FRP rebar. Ductile hybrid FRP bars were successfully fabricated at Ø3mm and Ø10mm nominal diameters using the braidtrusion process. Tensile and bending specimens from these bars were tested and compared with behavior of stress-strain of steel bar and GFRP rebar

  • PDF

Tensile Properties of Hybrid FRP Rods with Glass and Carbon Fibers (유리와 탄소섬유로 제작된 하이브리드 FRP 로드의 인장특성에 관한 실험연구)

  • You, Yong-Jun;Park, Ji-Sun;Park, Young-Hwan;Kim, Keung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.275-282
    • /
    • 2006
  • Recently, Fiber Reinforced Polymers(FRP) has been emerged as an alternative material to solve the corrosion of steel reinforcement in reinforced concrete structures. FRP exhibits higher specific strength and lower weight compared to steel reinforcement. Moreover, good resistance to corrosion of the FRP may be useful in aggressive environments causing deterioration such as chloride environment. However, causes for higher initial cost of FRP than that of steel, little information on the long-term behavior of FRP, and brittle failure make the efforts to apply FRP in civil structures slow. Glass fiber among the fibers used to manufacture FRP can be seen as the most beneficial material with regard to initial costs. But its low elastic modulus, which attains barely a quarter of steel, nay thus lead to excessive deflections when used as reinforcement for flexural members. This research was carried out on the tensile properties of hybrid rods made with glass and carbon fibers to improve those of FRP rod made with glass fiber. Parameters were resin type and the arrangement of glass and carbon fibers. The tensile properties of hybrid rods were compared with those of rods manufactured with only glass or carbon fibers. The results indicated that the tensile properties of hybrid rod were good when the carbon fiber was arranged in the core.

A Study on the Development of Dewatering Mold Form for Performance Improvement of Concrete (콘크리트 성능개선을 위한 탈수거푸집공법의 실용화 연구)

  • Woo Kwang-Min;Lee Hak-Ki
    • Korean Journal of Construction Engineering and Management
    • /
    • v.4 no.4 s.16
    • /
    • pp.88-95
    • /
    • 2003
  • Dewatering mold form get many holes on the surface to drain excessive water from combine concrete. While fiber is adhered to the forms inter surface, that makes it possible to improve concrete workability by draining excess water through the holes. We can expect the outer layer to solidify and to compact and get improvement of concretes durability. Maybe, it is valuable enough that dewatering mold form is put to practical use. On this study, the purpose is to obtain fundamental data for effective dewatering mold and properties of exposed concrete with the form, and ultimately, is to propose practical theory.