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Simulation of Dynamic Crack Propagation in Uni-Directional and Cross-Ply
Fiber-Reinforced Composites
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Abstract

This paper presents the formwulation and numerical implementation of a spectral scheme specially developed to simulate dynarmic
fracture events in unidirectional and cross-ply fiber-reinforced composites. The formulation is based on the spectral representation
of the transversely isotropic elastodynamic relations between the traction stresses along the fracture plane and the resulting
displacements. Example problem of dynamically propagating cracks in fiber—reinforced composites is investigated and compared
with reference solutions available in the literature and/or experimental observations. This scheme can be directly applicable to the
interfacial fracture analysis in the FRP reinforced concrete structures.
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1. Introduction and Rosakis, 1997), including the appearance of
intersonic crack speeds under shear-deminated loading
The most notorious example of dynamic failure of conditions(Coker and Rosakis, 1998). These various
composite structures is undoubtedly the extensively observations have motivated the present development
studied impact-induced delamination{Abrate, 1998), in of an efficient numerical scheme able to investigate in
which substantial subsurface damage can take place in great details a wide range of fundamental dynamic
a composite laminate without apparent subsurface fracture problems involving a planar crack embedded
damage in the vicinity of the impact point. Rapid in an infinite linearly elastic unidirectional or cross-ply
propagation of planar cracks has also been observed in composite medium and subjected to any quasi-static or
thicker uni~ and multidirectional composites(Lambros dynamic loading conditions. The spectral form of the
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boundary integral formulation presented in this paper
is directly inspired from previous developments of the
numerical scheme used in the analysis of 2D and 3D
fundamental dynamic fracture problems in homogeneous
(Geubelle and Rice, 1995) and bimaterial (Geubelle and
Breitenfeld, 1997; Breitenfeld and Geubelle, 1998)
media. The spectral formulation relies on the elasto-
dynamic relations, expressed in the Fourier domain,
between the traction stresses acting along the fracture
plane and the associated displacement and velocity
components. In Section 2, we start with a brief review
of the elastodynamic relations for a transversely isotropic
material, then summarize the derivation of the
corresponding 2D spectral formulation and implementa-
tion. Section 3 is dedicated to the simulation of subsonic
and intersonic crack propagation in unidirectional and
cross—ply composite media and to a comparison with the
experimental observations obtained by Coker and
Rosakis(1998).

2. Transversely isotropic spectral formulation

The spectral formulation developed hereafter aims
at the accurate and efficient solution of two types of
2D dynamic fracture problems in fiber-reinforced
composite media. The first type is concerned with the
dynamic failure of unidirectional composites, for
which the symmetry axis(i.e., the fiber direction) is
either perpendicular(Fig. 1a) to the crack front. The
second type of fracture problem considered in this
paper is associated with the dynamic delamination of
a(0/90) cross-ply composite(Fig. 1b), with the planar
crack propagating along the planar interface. In
addition to the two-dimensionality of the displacement,

ui (%1,%2,1) and stress % (x1,%2,1) fields, we further
assume that the dynamic response and failure of the
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Figure 1 Fiber-reinforced composites; (a) fibers in
xi-direction, (b) bimaterial system.
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composite is adequately captured by the homogenized
anisotropic elasticity theory, thereby neglecting the
heterogeneity associated with the multi-phase micros-
tructure.

We start the derivation of the spectral formulation
from the displacement form of the elastodynamic
relations, which, for the two special fiber orientations
considered here, take a simpler form allowing for the
decoupling of the in-plane and out-of-plane motions.
For the 0° case, the in—plane motion is described by

2 2 2
Uy d Uy d Uy - d Uy
¢y 12 +066 ——-—axzz +(C]2 +C66)axlax2 P atz (1)
azuz 62u2 azu] a Uy
C +c +(Ccjr+cgg ) ———=
% ox;? # axy’ (e12+cas) dx;0x; ar 2
and the out-of-plane motion by
82u3 1 32u3 82u3
c +=(cyy—cr3)—>=p
6 8x12 2( 2 23) 8x22 at2 (3)

The five elastic constants €11, €22, €J2, €23 and

(1~3) define the constitutive

relations for an isotropic medium with its symmetry

C66 entering Egs.

axis aligned with the XI axis:
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For an isotropic solid, these elastic constants can be

expressed in terms of the Lamé constants A and H as

cr=cp=A+2U cpp=cp;3=A 6 =M (5)

Transversely isotropic materials are characterized

by three fundamental bulk wave speeds: the shear

wave speed, Cs, the dilatational wave speed in the
1
fiber direction, cc(i ), and the dilatational wave speed

2
normal to fibers, Cfi), respectively defined as
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where o denotes the density of the material.

The basic steps leading to the derivation of the
spectral formulation for a transversely isotropic
material are somewhat similar to those used by
Breitenfeld and Geubelle(1998) in the bimaterial
Only the
corresponding to the 0° case are indicated here. The

particular form of the spectral formulation used here

isotropic case.

important relations

is the so-called independent formulation introduced
by Ceubelle and Breitenfeld(1997), which has been
shown to have better accuracy and stability than the
original combined formulation presented by Geubelle
and Rice(1995) under shear or mixed-mode loading
conditions.

Let % (xl,t)=o‘z2(x1,x2=0,t) denote the dynamic

traction stresses acting on the fracture plane X2=0

+ . ot ‘
and % {xl,t)-u,(x1,x2 0 ,z) the boundary displace-

ments. The fundamental form of the elastodynamic
equations used in this work is

o 9u,:'r(x1,!)
T () =17 (xpt) Wi — 57—

+ f;‘f (x,,t) (7)

where % (xb’ ) denotes the externally applied
traction stress that would exist on the fracture plane
if no crack was present; the second term, often
referred to as the radiation term, corresponds to the
instantaneous response of the material: the last term
incorporates the dynamic effects associated with the
non-uniform motion of the fracture surfaces. The
superseripts "+ and "~ indicate quantities associated

with the upper and lower materials, respectively, and

are omitted unless required for clarity. In Eq. (7}, Vij

denote the components of a diagonal matrix
containing material properties
c 6’512) C
— 66
V“=~i6~ V22- 3 Cs6 V33=
CS * Cs ) ﬂ CS (8)

R

where 256/ (¢22=c23) (B=1 for isotropic

media). The last term in Ea. (7), fi‘(xl’ ’). is the
convolution term and is expressed in the spectral

domain as a time convolution between its Fourier
coefficients  fi (t; ‘1) and the Fourier coefficients

+ . +
U; (f; ‘3) of the boundary displacements i (va t) as

Fi(:9) = tekslal [ Hup(lale) UF (= ¢q)laledar

PG EE )
+icgs |g] 2'%“ U3 (t:9)
+ic§6 [q‘ J;HIZ ([q[csit') Uz‘r (t-t7q) Iqlcfdt' ©)

F§ (s:9) =k lal [ Ho (lalei) U (1= t:q)lalcFar

S DE y(E
~icks g 2—————'7”7?(2;1 Ui (1:9)
~icsla| [ Hiz (llext) UF (e=t:0) laltar (1)

Ff (nq) =¢f[—);ig4q1 [ #ss(lalet) UF (= tsa)lal s
(11

where ¢ is the spectral mode number: ¢ is time: iis

. 1 .
the imaginary number: 77( )=\(sz/665 ;

72(2) =qcn/ces L =ycia/ces

One of the major advantages of the spectral method
is associated with the non-singular character of the

convolution kernels ™9 entering Eqgs. (9~11). In the

H;

0° case(see Fig. 1a), "% are defined as

H(T)=

7)(2)\/s2+7/1)2 + 1+

L-]

-S

(12)
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HZZ (T) =
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—f Vs

L—I

(14)

where s= p/c |q| and fp denotes the Laplace
transform of /() . The convolution kernels are readily
inverted back to the time domain using conventional
numerical Laplace inversion algorithms. The convolution
kernel for the out-of-plane motion, 33, is identical

to that entering the isotropic problem, and is given

by H33(T)=JI(T)"{T, where JI(T) denotes the
Bessel function of the first kind. The convolution
kernels are illustrated in Fig. 2 for a Graphite/Epoxy
composite material with €17 =82GPa, €22=11.1GPa,
€12=4.0GPa, €23=49 (GPa and €66 =3.6GPa. As
apparent in Fig. 2, the convolution kernels are

non-singular, oscillating and decaying functions, and

15 | .4
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Figure 2 Convolution kernels entering the spectral
formulation for a graphite/epoxy material.
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do not therefore require the special treatment associated
with the(hyper)singular kernels encountered in more
conventional boundary integral formulations.

To complete the spectral formulation Eqs. (7~11),
three components{appropriate interface conditions, a
time stepping scheme and cohesive-based failure
model) are needed. Firstly, appropriate interface
conditions must be incorporated to link the elasto-
dynamic solutions of the two half spaces described by
Ea. (7). Four interface conditions must be considered:
1) the non-failing region, in which the traction stresses
and displacements are continuous across the interface:
2) the cohesive failure zone, where the traction stresses
are equal to the(possibly decaying) strength of the
material: 3) the traction-free crack region, in which the
traction stresses are set to zero; and 4) the possibility
of spontaneous contact between the crack faces, where
the interface conditions correspond to the continuity of
the normal tractions and the absence of material
interpenetration. See Section 3 in Breitenfeld and
Geubelle(1998) for the implementation of the interface
conditions. Secondly, a time stepping scheme must be
introduced to integrate over time the velocity
distribution derived from Eq. Eq. (7) and obtain the
displacement solution entering the convolution
relations Egs. (9~11). Finally, in order to simulate
dynamic fracture problems involving the spontaneous
initiation, propagation and arrest of a crack, a
cohesive-based failure model must be introduced to
relate the strength of the material along the fracture
plane to the displacement and/or velocity discontinuities.
Among the wide range of cohesive models that can be
incorporated in the spectral scheme, we use hereafter
a relatively simple rate-independent coupled cohesive
failure model, which relates the normal and shear

strengths along the fracture plane to the normal(Jn)

and tangential(5s) displacement discontinuities across

the fracture plane as

(15)



where (@ =a if 4 > 0 and = 0 otherwise; T and
Tsc denote the intact tensile and shear strengths of

the fracture plane, while éfz and J5 correspond to the
critical values of the normal and shear crack opening
displacements beyond which complete failure is

achieved. Note that 7n and 7 are the normal and
shear strength of the interface. The numerical
implementation of the spectral scheme for the
transversely isotropic problem is similar to that used
in the isotropic case by Breitenfeld and Geubelle
(1998). For completeness purpoese, let us indicate that
it involves the discretization of a period X of the
fracture plane by N uniformly spaced grid points
separated by X/N. A Fourler series representation of
the displacements and dynamic stress distribution is
introduced as

|5 (x0). £} (x1.1)]

k=N/2

[UF(0), FF (1) |exp [ 2k / ] (16)

T k=-N/2

with the conversion between spectral and real
domains performed efficiently through an FFT
algorithm, using the N grid peints as sampling points.
The aforementioned time stepping scheme is explicit.
The time step size is therefore dictated by the
classical Courant stability condition.

3. Subsonic and intersonic crack propagation

As indicated in the introductory section, observa-
tions of dynamic failure in unidirectional graphite/
epoxy composites performed recently by Coker and
Rosakis(1998) have yielded somewhat unexpected
results. Under dynamic tensile(mode 1) loading,
subsonic crack motion{i.e., at speeds below the
Rayleigh wave speed) is observed, and, unlike in the
homogeneous case for which tensile cracks hardly
exceed 0.4 to 0.5 ¢r due to branching instabilities,

mode [ cracks in unidirectional composites can achieve

B2t

When the

composite is subjected to dynamic shear{mode II)

propagation speeds approaching CRr.

loading, cracks tend to enter the intersonic regime, for
which the crack velocity Ve exceeds the shear wave

gspeed €5 of the surrounding material, but remains
below the dilatational wave speed c((;) . This fracture

response of unidirectional composites is reminiscent of
recently observed intersonic crack motion in homogeneous
isotropic specimens subjected to shear loading(Rosakis,
Samudrala and Coker, 1999). However, unlike in the
isotropic case where a weak plane has to be introduced
ahead of the pre—crack to prevent the shear-loaded
crack from kinking out of its original plane, weak
planes exist naturally in unidirectional composites
parallel to the fiber direction. Any deviation from
planar crack motion is faced with a substantial
energetic penalty associated with the fiber breakage
and pullout processes. To investigate the intersonic
motion of a crack in a unidirectional composite,
Huang, Wang. Liu and Rosakis(1999) have presented
an asymptotic analysis of the near-tip fields for a
steadily propagating mode-II crack, showing the
existence in the intersonic range of a critical crack tip
velocity characterized by a non-vanishing energy
release rate. The steady-state intersonic mode-II
crack problem was also studied by Broberg(1999),
who also determined the energy flow into the process
region using the Barenbhalt cohesive failure model. In
a recent numerical analysis, Geubelle and Kubair
(2000) have used the isotropic version of the spectral
scheme to study various issues associated with the
subsonic to intersonic transition in isotropic systems
under pure mode II and mixed-mode conditions.
Building on the success of this analysis, we show in
this section how the spectral scheme developed above
can be used to study accurately the subsonic and
intersonic fracture of unidirectional graphite/epoxy
composites and reproduce the experimental results of
Coker and Rosakis. While we limit our investigation
to the pure mode 1 and mode Il loading cases, we
study two material systems: the homogeneous (0° case,
and the bimaterial (0/90) problem(Fig. 1). The model
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dynamic fracture problem simulated hereafter is
schematically shown in Fig. 3. It consists of a pre-

stressed graphite/epoxy specimen subjected to uniform

tensile( §=0°) or shear( g=90°) loading o, = 18Mpa.
At time #=0, a crack of initial length a, = J./8(where

L=0.2m denotes the discretized portion of the
fracture plane) is introduced on the left side of the
domain. Due to the dynamic stress concentration
building up in its vicinity, the right crack tip starts to
propagate along the Xj-axis, while the left crack tip
is kept stationary. For simplicity we assume that the
tensile and shear failure properties of the composite

along the fracture plane are equal, both with regards
to the strength values(z; =z{ = ¢ =36Mpa) and the
critical values of the crack opening displacemenﬁs
(85 =65 =5°=26.31m) entering the cohesive failure

model described in Eq. (15). 2048 equally spaced grid
points are used to discretize the fracture plane, and
the time step is chosen as ¢s A= 01A4x  where Ax
denotes the grid point spacing. In all the simulations
of spontaneous crack propagation, special care was
taken to capture with cohesive failure zone with
sufficient accurately(typically, with at least 10
sampling points). The elastic wave speeds for the
graphite/epoxy composite are listed in Table 1 for the
two fiber orientations considered here. Fig. 4 illustrates
the evolution of the crack tip speed as a function of
crack tip position for the unidirectional composite
specimens subjected to both mode-I and mode-II
loading. The results relative to the 0° unidirectional

composite are directly relevant to the experiments

%2 o,
VAV

— .
. . |
1

Figure 3 Schematic of the dynamic crack propagation
problem
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Table 1 The elastic wave speeds 0° and 90° graphite/
epoxy composite

Wave Fibers parallel to | Wave Fibers parallel to
speeds X-axis speeds Xgaxis
C,(il) 7450m/s CE;) 2740m/s
) 2740m/s ) 2740m/s
Cs 1560m/s Cs 1448m/s
CR 1548m/s R 1433m/s
8000 P =7450m /s
7000 |
6000 | mode-II crack
Va 5000 | Case [
4000 L e -
3000 [
2000 ¢ ¢, =1560 m /s
1000 [ mode-I crack
0

002 004 006 008 01 012 014
Crack tip position (m)

Figure 4 Crack tip speed( V,) as a function of crack
tip position for mode-l and mode-Ii cracks in case [:
unidirectional 0° case.

performed by Coker and Rosakis(1998), although the
impact loading used in their experiments is quite
different from the uniform pre-loading used in our
model dynamic fracture problem.

As was the case in their experiments(see Fig. 19 of
Coker and Rosakis(1998)), the mode I loaded crack
remains subsonic and quickly approaches the Rayleigh
wave speed. In the mode II case, the crack quickly
exceeds the shear wave speed and becomes intersonic.
In our particular setting, for which energy is
continuously provided to the crack tip region, the crack

keeps accelerating and asymptotically approaches the

dilatational wave speed ng).

Results for the cross—ply composite(bi-material
case) are presented in Fig. 5. Interestingly, results
indicate that the maximum delamination speeds
under mode-I and mode-1I loading are respectively
bounded by the shear and dilatational wave speeds of



the more(in-plane) compliant(bottom) material. This
result is quite different from that obtained for a
Homalite/Aluminum problem(Breitenfeld
and Geubelle, 1998), for which the maximum crack
velocity was shown to be the Rayleigh wave speed of
the stiffer material. Note that, in that particular case,
the Rayleigh wave speed of the stiffer material

(Aluminum) exceeded the dilatational wave speed of

isotropic

the more compliant one{Homalite) due to the very
strong material mismatch between the two components.

To further illustrate the characteristics of subsonic
mode I and intersonic(mode II) crack propagation, Fig.
6 presents the evolution of the main displacement

components{normal displacement ¥2 in the mode I

case, and tangential displacement ¥7 in the mode 11

case) for the 0° unidirectional problems. The various

R000 —v—v—-—v—r—v—v-vw—rv—vcé"’? =T480 mig T

7000 b .

6000 [ ]

5000 f

4000 ¢ ]

e = 2740 m i

3000 |

2000 ¢

1000

mode-I crack 2R 448

j%
]

003605001005 006007008009 0.1
Crack tip posttion (i}

Figure 5 Crack tip speed(Vc) as a function of crack
tip position for mode-| and moede-ll cracks in
bimaterial case.
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Figure 6 Snapshots of normalized displacement of
dynamically propagating mode-l and mode-~|l cracks
in case |- 0° unidirectional graphite/epoxy.

o O DT /
- 0 Bottom (907
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0 0.063 006 0.09 012 015
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Figure 7 Snapshots of normalized vertical displacement
of dynamically propagating mode-! crack in bimaterial
case.

Figure 8 Snapshots of normalized horizontal displace-
ment of dynamically propagating mode-ll crack in
bimaterial case.

curves are separated by the same time interval of 500
time steps. Taking advantage of mirror{anti) symmetry,
both the modes I and II are shown on the same figures.
It clearly illustrates the very rapid motion of the mode
I crack in the 0° unidirectional case.

Finally, the evolution of the displacements of the
top and bottom crack surface obtained during the
dynamic delamination process in bimaterial system is
presented in Fig. 7(mode 1) and 8(mode 1I). Note the
strong asymmetry present in the mode 11 case between
the two components. In the mode I loading case, the
top and bottom composite materials offer relatively

similar resistance to transverse motion.

4. Conclusions

A spectral scheme has been developed to simulate
dynamic fracture in a class of unidirectional and
cross-ply fiber-reinforced composites. The method is
based on the spectral representation of the transversely

isotropic elastodynamic relations between the traction
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stresses along the fracture plane and the resulting
displacements. It was demonstrated through numerical
examples that the spectral method not only captured
precisely the subsonic and intersonic crack propagation
for mode-1 and mode-II cracks. Bimaterial effect on the
simulation of dynamic fracture in fiber-reinforced
composites was also investigated, showing that the
maximum spontaneous debonding speeds under mode
I and 1T in—plane loading conditions are bounded by the
lower shear wave and dilatational wave speed of the
bimaterial system. This scheme can be directly
applicable to the interfacial fracture analysis in the
FRP reinforced concrete structures.
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