• Title/Summary/Keyword: 섬유강화 콘크리트

Search Result 68, Processing Time 0.025 seconds

Experimental Study on the Stress Variation of Concrete Containing F-fiber Extracted from Waste FRP (폐 FRP로부터 분리한 F-섬유를 이용한 콘크리트 강도 특성 변화에 대한 실험적 연구)

  • Yoon, Koo Young;Park, Jong Won;Lee, Seung Hee
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.1
    • /
    • pp.42-45
    • /
    • 2014
  • Even though to discard the waste FRP (Fiber-Reinforced Plastic) is urgent and problematic, the way to do it has not been efficient. In our project team the FRP have been splitted into some layers which have different physical properties; mat and roving layers. Among those, the roving layer woven like a basket by bundles of glass fibers has been cut into reusable fibers called 'F-fiber'. F-fiber is 1 mm or 3 mm in width and 3 cm in length. It is used in fiber-reinforced concrete (FRC) with 0.5%, 0.7%, 1.0%, or 1.5% of volume ratio. Produced FRC was tested in compressive, tensile, and bending stress in contrast to the without-fiber (standard) concrete and 0.1% polypropylene reinforced concrete (PP-FRC). The tensile and bending stresses are more or less those of PP-FRC. The compressive stress, however, is similar (with 3 mm F-fiber) to or lower (with 1 mm F-fiber) than that of standard concrete. Conclusively the usage of the waste FRC in concrete is advised to be limited to the one where the compressive stress is not much critical.

A numerical study on feasibility of the circled fiber reinforced polymer (FRP) panel for a tunnel lining structure (터널 라이닝 구조체로서 곡면 섬유강화 복합재료의 적용성 검토를 위한 수치해석적 연구)

  • Lee, Gyu-Phil;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.6
    • /
    • pp.451-461
    • /
    • 2010
  • Utilization of the fiber reinforced polymer (FRP) material has been enlarged as a substitution material to the general construction materials having certain long-term problems such as corrosion, etc. However, it could be difficult to apply the FRP material, which has a linear shape generally, to an arch-shaped tunnel structure. Therefore, an attempt has been made in this study to develop a device to form a designed cross section of FRP material by pulling out with a curvature. A sample of the circled FRP product was successfully produced and then the sample has been tested to identify its physical characteristics. Then, intensive feasibility studies on the circled FRP panel to be used for a tunnel lining structure have been carried out by numerical analyses. As a result, it appears that the new circled FRP-concrete composite panel has a high capability to be used for a tunnel lining material without any structural problem.

Study on mechanical behavioral characteristics of FRP-concrete composit member considering interface element between FRP and concrete (계면특성을 고려한 FRP와 콘크리트 복합부재의 역학적 거동특성 분석 연구)

  • Lee, Gyu-Phil;Park, Young-Taek;Hwang, Jae-Hong;Kim, Dong-Gyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.6
    • /
    • pp.595-606
    • /
    • 2012
  • Utilization of fiber reinforced polymer(FRP) material has been increased to solve construction material problems such as corrosion, etc. However, there are still many problems in using a linear-shaped FRP material for a tunnel structure with curved section. In this study, the loading tests were performed on the curved FRP-concrete composite material to evaluate its behavior as tunnel support. These tests were based on the result from preliminary numerical analysis on FRP-concrete composite material. Also, additional numerical analysis considering interface characteristics between FRP and cement-concrete was conducted to compare the result of loading test on FRP-concrete composite material. From the results of the loading test and numerical analysis, the analysis method suggested from this study is reasonable to evaluate the mechanical behavior of FRP-concrete composite material.

하중방향에 따른 직물구조 CFRP의 손상에 대한 AE특성

  • 윤유성;이승현;권오현
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.05a
    • /
    • pp.360-365
    • /
    • 2003
  • 최근 선진국에서 차세대전투기와 고속철도차량 및 자동차 동체 등 경량화를 위해 복합재료의 사용범위가 증가되고 있다. 특히 강화재로서 섬유를 직물구조의 형태를 이용한 직물구조 CFRP 복합재료는 일방향 섬유에 비해 변형능력이나 기계적 특성이 우수하여 철근 콘크리트 구조물의 보강제와 같은 구조물 등에까지 그 사용이 확대되고 있다. 하지만 직물구조 CFRP 복합재료는 내부의 손상형태나 위치를 파악하기가 어렵고 직물구조의 복잡한 강화구조를 가지기 때문에 그 역학적 손상거동과 명확한 파괴거동 해석수법은 확립되어 있지 않다.(중략)

  • PDF

Self-Diagnosis for Fracture Prediction of Concrete Reinforced by New Type Rib CFGFRP Rod and CF Sheet (신형 리브재 CFGFRP 보강근 및 CF 보강시트로 보강된 콘크리트의 파괴예측 자가진단)

  • Park, Seok-Kyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.115-123
    • /
    • 2007
  • For investigating self-diagnosis applicability, a method based on monitoring the changes in the electrical resistance of carbon fiber reinforced concrete has been tested. Then after examining change in the value of electrical resistance at each flexural weight-stage of carbon fiber in CFGFRP (carbon fiber and glass fiber reinforcing plastic) with new type rib and carbon sheet for concrete reinforcing, the correlations of electrical resistance and load as a function of strain, deflection were analyzed. As the results, it is clarified that when carbon fiber rod, rib and sheet fracture, the electrical resistance of it increase largely, and specially in case of CFGFRP, afterwards glass fiber tows can be resist the load due to the presence of the hybrid (carbon and glass) reinforced fiber. Therefore, it can be recognized that reinforcing bar and new type rib of CFGFRP and sheet of CF could be applied for self-diagnosis of fracture in reinforced FRP concrete.

Compressive Strength and Fire Resistance Performance of High Strength Concrete with Recycled Fiber Power from Fiber-Reinforced Plastics (재활용 FRP 미분말을 혼입한 고강도 콘크리트의 압축강도 및 내화성능)

  • Lee, Seung Hee;Park, Jong Won;Yoon, Koo Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.1
    • /
    • pp.46-51
    • /
    • 2014
  • Increasing of waste FRP (fiber reinforced plastics) has caused environmental problems. Recently, the technology of making fibers from waste FRP, which can be used to reinforce the concrete, was developed and the reinforced concretes were tested to study the structural performance. The purpose of this study is to investigate the effect of the powder, obtained together with F-fiber from the waste FRP, on the compressive strength and the fire resistance performance as in the high strength concrete. Strength tests show that the use of recycled FRP powder does not reduce the compressive strength of high strength concrete if the volume fraction of FRP powder is less than 0.7%. Electric furnace test results also show that the use of recycled FRP powder may increase the fire resistance performance of high strength concrete significantly.

Evaluation on Mechanical Properties of Organic of Fiber Reinforced Concrete Using Macro Forta Fiber (매크로 포타 섬유를 사용한 섬유 보강 콘크리트의 역학적 특성 평가)

  • Ryu, Hwa-Sung;Kim, Deuck-Mo;Shin, Sang-Heon;Ryu, Il-Hwan;Joe, Ji-Min
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.4
    • /
    • pp.321-329
    • /
    • 2017
  • Concrete is a semi-brittle material, so its compressive strength is high but its tensile strength is low. The use of fiber-reinforced concrete to improve the disadvantages of such concrete can be an effective way to toughen effective toughness, and the performance is improved by using steel fiber reinforced concrete for structures that are vulnerable to bending forces. However, alternative materials are required due to corrosion of steel fiber and lowering of workability. The purpose of this study is to evaluate the availability of replacing steel fiber reinforced concrete by evaluating physical properties, mechanical properties and drying shrinkage properties of concrete using macro forta fiber with excellent diffusibility. Experimental results show that the macro forta fiber has better fluidity and mechanical performance than the steel fiber reinforced concrete. It was also confirmed that the crack resistance of concrete using Macro Forta fiber is effective in improving structural cracking and drying shrinkage resistance compared to steel fiber reinforced concrete.

Engineering Properties of Concrete Enhanced with Rice Husk Ash and Polypropylene Fiber (폴리프로필렌 섬유 보강 RHA콘크리트의 공학적 특성)

  • Lee, Yun;Park, Ki-Tae;Kwon, Seung-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.3
    • /
    • pp.427-437
    • /
    • 2015
  • Concrete, as a construction material, needs suitable reinforcement for tensile region due to weak tensile strength. Many researches on cement reduction have been attempted for $CO_2$ emissions during cement clinker production. In this paper engineering properties of concrete enhanced with polypropylene fiber (PPF) and rice husk ash (RHA) are evaluated. Fiber volume ratios of 0.125~0.375 and RHA replacement ratio of 0~20% are considered for concrete mixture. Lots of test including compressive, split, flexural and the related crack width, impact energy, and pull out test are performed and the results are evaluated considering the fiber ratios, fiber length and RHA replacement. Fiber and RHA ratios have dominant effects on tensile and compressive characteristics respectively, and the concrete with 0.125% of PPF and 10% of RHA shows the most effective enhancement for engineering properties. Appropriate addition of RHA and PPF are very effective both for engineering property enhancement and clean technology.

Tension-Stiffening Model and Application of Ultra High Strength Fiber Reinforced Concrete (초고강도 강섬유보강 철근콘크리트의 인장강화 모델 및 적용)

  • Kwak, Hyo-Gyoung;Na, Chaekuk;Kim, Sung-Wook;Kang, Sutae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.267-279
    • /
    • 2009
  • A numerical model that can simulate the nonlinear behavior of ultra high strength fiber reinforced concrete (UHSFRC) structures subjected to monotonic loading is introduced. The material properties of UHSFRC, such as compressive and tensile strength or elastic modulus, are different from normal strength reinforced concrete. The uniaxial compressive stress-strain relationship of UHSFRC is designed on the basis of experimental result, and the equivalent uniaxial stress-strain relationship is introduced for proper estimation of UHSFRC structures. The steel is uniformly distributed over the concrete matrix with particular orientation angle. In advance, this paper introduces a numerical model that can simulate the tension-stiffening behavior of tension part of the axial member on the basis of the bond-slip relationship. The reaction of steel fiber is considered for the numerical model after cracks of the concrete matrix with steel fibers are formed. Finally, the introduced numerical model is validated by comparison with test results for idealized UHSFRC beams.

An Experimental Study on the Mechanical Properties of Hybrid Fiber Reinforced Plastic(FRP) Rebar for Concrete Structure (콘크리트 구조물용 하이브리드 섬유강화 복합재료 리바 물성에 관한 실험적연구)

  • 배시연;신용욱;한길영;이동기;심재기
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.63-66
    • /
    • 2000
  • This paper describes the need for a ductile Fiber Reinforced Plastic(FRP) reinforcement for concrete structures. Using the material hybrid and geometric hybrid, it is demonstrated that the pseudo-ductility characteristic can be generated in FRP rebar. Ductile hybrid FRP bars were successfully fabricated at 4mm and l0mm nominal diameters using an hand lay up method. Tensile specimens from these bars were tested and compared with behavior of FRP rebar and steel bar

  • PDF