• Title/Summary/Keyword: 설계기준항복강도

Search Result 129, Processing Time 0.025 seconds

A Study on the Effect of Fire Heat on the Durability of Concrete Structures Repaired and Reinforced with Epoxy Resin (화열(火熱)이 에폭시수지로 보수·보강된 콘크리트 구조체의 내구성에 미치는 영향에 관한 연구)

  • Tai Kwan Cho
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.1
    • /
    • pp.138-145
    • /
    • 2023
  • Purpose: In accordance with the increase in the number of buildings repaired and reinforced following deterioration from when a fire occurs in a previously reinforced building, the impact on the structure after the fire is analyzed to establish standards for repair and reinforcement measures. Method: After curing for 28 days, the process was to measure the compressive strength and induce destruction through a compressor, repair and reinforce it with epoxy, and conduct a re-compressive strength test on some specimens after curing for 3 days to understand the degree of strength restoration. The rest of the repaired and reinforced specimens as well as the unrepaired and unreinforced specimens were then put into an oven and heated according to the temporal and temperate conditions listed below, and then the compressive strength was tested to estimate the impact of fire. Result: After reinforcing the yielded specimen with epoxy, the process was to then put it in an oven and heat it at different temperatures over time. It was found that there was a decrease in the strength of the reinforcement more than that of the actual specimen. Conclusion: Based on this, it was found that a building repaired and reinforced with epoxy resin is actually more dangerous than a general unrepaired building when it is damaged by fire, and thus, that it must be prepared for fire vulnerabilities.

Analysis of Reinforcement Effect of Steel-Concrete Composite Piles by Numerical Analysis (II) - Bearing Capacity - (수치해석을 이용한 강관합성말뚝의 보강효과 분석 (II) - 지반 지지력 -)

  • Kim, Sung-Ryul;Lee, Si-Hoon;Chung, Moonkyung;Lee, Juhyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.267-275
    • /
    • 2009
  • The steel pipe of steel-concrete composite piles increases the pile strength and induces the ductile failure by constraining the deformation of the inner concrete. In this research, the load-movement relations and the reinforcement effect by the outer steel pipe in the steel-concrete composite pile were analyzed by performing three-dimensional numerical analyses, which can simulate the yielding behavior of the pile material and the elasto-plastic behavior of soils. The parameters analyzed in the study include three pile materials of steel, concrete and composite, pile diameter and loading direction. As the results, the axial capacity of the composite pile was 1.9 times larger than that of the steel pipe pile and similar with that of the concrete pile. At the allowable movement criteria, the horizontal capacity of the composite pile was 1.46 times larger than that of the steel pile and 1.25 times larger than that of the concrete pile. In addition, the horizontal movement at the pile head of the composite pile was about 78% of that of the steel pile and about 53% of that of the concrete pile, which showed that the movement reduction effect of the composite pile was significant and enables the economical design of drilled shafts.

A Study on the Effective Length Factor for Steel Plate-Concrete Structures using Cementless Concrete (무시멘트 콘크리트를 활용한 강판콘크리트 구조의 유효좌굴길이 계수 분석에 관한 연구)

  • Han, Myoung-Hwan;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.661-671
    • /
    • 2018
  • Domestic studies on steel plate concrete structures have focused on nuclear structures with high strength. In this study, the SC structure was applied to the general structure, and the SC structure that is advantageous in terms of safety and construction was limited to a special structure. As a basic study for applying SC, this paper proposes basic design information of a SC structure applying cement concrete to plan the structure, which is suitable for eco - friendliness by replacing concrete cement, an important factor in a SC structure, with blast furnace slag. This study examined the compression characteristics and the effective length factor under central compression load. To calculate the effective length factor, the Euler column theory was applied without applying plate theory. The effective length factor was calculated from the yield strength of the steel plate, buckling of the steel plate, and the point at which the concrete was broken. In addition, this study examined whether the maximum compressive strength meets the national and international reference equations with the slenderness ratio (B/t) as a parameter. By analyzing the buckling of the specimen by applying the column theory and selecting the strain of the measured steel plate, the effective length factor was analyzed and compared with the value presented in the reference equation.

Influence of Transverse Reinforcement Elements for Flexural Strength of Lap Spliced Ultra-high-strength Reinforced Concrete Beams (겹침이음된 초고강도콘크리트 보의 휨강도에 횡방향보강 요소가 미치는 영향)

  • Bae, Baek-Il;Choi, Hyun-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.135-142
    • /
    • 2022
  • In this study, lap spliced ultra-high strength reinforced concrete beams were tested and the code criteria for calculating the lap splice length which was affected by the transverse reinforcement and concrete covering performance were reviewed. The main variables for test were set as fiber volume fraction and transverse reinforcing bar arrangement to improve the confining performance of the concrete cover. The change of the confining performance of concrete cover according to the increase in the fiber mixing amount at 1% and 2% volume ratio was examined, and D10 stirrups with a spacing of 100 mm were placed in the lap spliced region. As a result of the test, the specimens confined by the stirrups showed a sudden drop of load bearing capacity with horizontal cracking at the position of tensile longitudinal reinforcement. However, horizontal cracks were not appeared at the location of longitudinal reinforcement for the specimens with steel fiber. And these specimens showed gradual decrease of load bearing capacity after experiencing peak load. In particular, it was found that the strain at the position of the tensile longitudinal reinforcements of the specimens to which the mixing ratio of 2% was applied exceeds the yield strain. As a result of measuring the strain on the concrete surface, it was found that the fiber was more effective in preventing damage to the concrete surface than the stirrups for short lap spliced region.

Evaluation of Minimum Spiral Reinforcement Ratio of Circular RC Columns (철근콘크리트 원형기둥의 나선철근 최소철근비에 대한 평가)

  • Kim, Young-Seek;Kim, Hyeong-Gook;Park, Cheon-Beom;Kim, Sang-Woo;Kim, Kil-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.1-9
    • /
    • 2017
  • Spiral reinforcement in a circular column plays an effective role in the ductile behavior of a column through position fixing and buckling restraining of the longitudinal reinforcement, and confining core-concrete. Each country has suggested the minimum volumetric ratio of spiral reinforcement in order to secure the ductility of concrete columns. The minimum volumetric ratio of spiral reinforcement suggested by ACI 318-14 and the national concrete structure design standard was developed based on the theory of Richard et al. (1928); furthermore it has been used until now. However, their theory cannot consider the effects of high strength concrete and high strength reinforcement, and arrangement condition of the spiral reinforcement. In this study, a modified minimum volumetric ratio equation is suggested, which is required to improve the ductility of reinforced concrete circular columns and to recover their stress. The modified minimum volumetric ratio equation suggested here considers the effect of the compressive strength of concrete, the yield strength of spiral reinforcement, the cross sectional area of columns, the pitch of spiral reinforcements and the diameter of spiral reinforcement. In this paper, the validity of the minimum volumetric ratios from ACI 318-14 and this study was investigated and compared based on the results of uniaxial compression experiment for specimens in which the material strength and the spiral reinforcements ratio were used as variables. In the end of the study, the modification method for the suggested equation was examined.

A Study on the Wire Drawing of Stainless Steel (스테인리스 와이어의 인발에 관한 연구)

  • Park, Kang-Geun;Choi, Won-Sik
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.1 s.23
    • /
    • pp.71-78
    • /
    • 2007
  • Stainless steel is very famous for using of industrials structure and joint elements. Stainless steel wire drawing is one of the most ancient crafts. But there's not any standard size of tapered die during tile drawing. This paper was studied die angle and dimension of whole die by using AFDEX drawing simulator. Stress, metal flow and strain rate was analyzed by AFDEX tools during the wire drawing. So optimum data of during dies was taken from them. Simulation data was correspond with experimental data. The results of the optimum dies are shown that (1) Reduction angle is $13.8^{\circ}$ (2) Bark relief angle is $20^{\circ}$ (3) Bearing length is 0.7975mm (4) Bearing dia is 0.2393mm The research of the optimum result when the make dies is connected an enterprise. After researching, I hope that indirection effect creation make development situation of the manufactural technical, practical application of the other die size by the detail data, utility factor and economical efficiency.

  • PDF

Durability Evaluation of Hybrid Expansion Joint System with Improved Replacement (보수성을 개선한 복합형 신축이음장치(HRS) 내구성 평가)

  • Jung Woo Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.1-7
    • /
    • 2023
  • Durability was evaluated by performing a full-scale vertical load fatigue test and a wheel load performance test on the HRS, which reduces the replacement time of the existing expansion joint and improves serviceability to allow partial replacement by lane. As a result of the vertical load fatigue test, the maximum stress of the rail-type expansion joint is 170 MPa, which is about 47.8% of the yield strength of the HRS expansion joint rail 355 MPa. The vertical load fatigue test of the HRS expansion joint with improved serviceability set the size and load of the load plate according to the road bridge design standards, did not show any fracture behavior in the vertical load fatigue test and the wheel load performance test 2 million times, and its durability and safety were verified.

Evaluation of Fatigue Endurance on Expansion Joint Manufactured Fe-Mn Damping Alloy (Fe-Mn 제진 금속을 적용한 신축이음장치의 피로 내구성 평가)

  • Kim, Ki-Ik;Kim, Young-Jin;Ahn, Dong-Geun;Kim, Cheol-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4D
    • /
    • pp.483-489
    • /
    • 2009
  • The endurance of expansion joint manufactured the Fe-Mn damping alloy reducing noise and vibration is analyzed into FEM (Finite Element Method) and fatigue test. The fatigue test have been performed using the expansion joint manufactured Fe-Mn damping alloy and the hydraulic actuator (25tonf). And the results of fatigue test show that the maximum strength is 237.6 MPa. Also that is 56.6 percent of Fe-Mn damping alloy yield strength (420 MPa). The loading plate size is prepared $57.7cm{\times}23.1cm$ and the loading plate's set position is located on expansion joint. The expansion joint manufactured the Fe-Mn damping alloy had not presented breaking behavior against 2,000,000 times fatigue test and identified the fatigue endurance.

Flexural Strength and Deflection Evaluation for FRP Bar Reinforced HSC Beams with Different Types of Reinforcing Bar and Fiber (이질 보강근 및 섬유와 함께 보강된 FRP 보강근 보강 고강도 콘크리트 보의 휨 강도 및 처짐 평가)

  • Yang, Jun-Mo;Yoo, Doo-Yeol;Shin, Hyun-Oh;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.413-420
    • /
    • 2011
  • The test results of high-strength concrete beam specimens, which have various combinations of different types of flexural reinforcement and short fibers, were compared with the prediction results of codes, guidelines and models proposed by researchers. The theoretical calculation based on the ultimate strength method of the KCI and ACI Code underestimated the ultimate moments of FRP bar-reinforced beams without fibers. The models proposed by ACI 544.4R and Campione predicted the ultimate moment capacities inaccurately for the FRP bar-reinforced beam with steel fibers, because these models do not consider the increased ultimate compressive strain of fiber reinforced concrete. Bischoff's deflection model predicted the service load deflections reasonably well, while the deflection model of ACI Committee 440 underestimated the deflection of FRP bar-reinforced beams. Because the ACI 440 expression, used to predict member deflection, cannot directly apply to the beams reinforced with different types of reinforcing bars, an alternative method to estimate the deflections of beams with different types of reinforcing bars using the ACI 440 expression was proposed. In addition, Bischoff's approach for computing deflection was extended to include deflection after yielding of the steel reinforcement in the beams reinforced with steel and FRP bars simultaneously.

Evaluation on Structural Performance of Precast Bridge Deck Joint using HSFRC (고강도 강섬유보강콘크리트를 적용한 프리캐스트 바닥판 이음부의 구조성능 평가)

  • Lee, Han-Joo;Chung, Chul-Hun;Shin, Dong-Ho;Park, Se-Jin;Kim, In-Gyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.196-205
    • /
    • 2017
  • In precast deck system, structural performance and serviceability are mostly determined by the connection methods between the precast decks. This study proposes precast deck system with asymmetric ribbed connection details using High Strength Fiber Reinforced Concrete(HSFRC) with filler. To verify the proposed method, the flexural performance experiment was carried out with variation of joint cross section type and splice rebar details. From the test results, regardless of joint details, spliced tensile rebars of specimens were deformed to yielding strain level. Also, all types of specimens resulted in sufficient flexural performance. These test results show that the minimum lap splice length specified in current Korea Highway Bridge Design Code is conservative for precast deck joint using HSFRC. Therefore, splice details can be simplified and joint width can be reduced by using HSFRC with filler between the precast decks, and the proposed precast deck systems can be applied to the connection part of precast decks effectively.