• Title/Summary/Keyword: 설계강우강도

Search Result 198, Processing Time 0.032 seconds

Problem and Improvement in Design of Drainage Pipe for Bridges (교량용 배수관경 국내기준의 문제점 및 개선안)

  • Hong, Kee-Jeung;Oh, Chang-Kook
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.37-42
    • /
    • 2011
  • Recently, the cause of flood damage has been the local torrential rainfalls rather than a total amount of yearly rainfalls. The domestic design code of drainage pump is being improved by considering the effect of local torrential rainfalls, while there is no consideration on the local torrential rainfalls in the domestic design code of bridge-deck drainage. Compared with the code of Federal Highway Administration in USA, no rational bases are specified in the domestic design code of bridge-deck drainage. This paper proposes the reasonable design guideline for bridge-deck drainage considering the effect of local torrential rainfalls.

Derivation of Probable Rainfall Intensity Formula Using Genetic Algorithm (유전자 알고리즘을 이용한 확률강우강도식의 산정)

  • La, Chang-Jin;Kim, Joong-Hoon;Lee, Eun-Tai;Ahn, Won-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.1 s.1
    • /
    • pp.103-115
    • /
    • 2001
  • The current procedure to design hydraulic structures in a small basin area is to estimate the probable rainfall depth using rainfall intensity formula. The estimation of probable rainfall depth has many uncertainties inherent with it. However, it has been inevitable to simplify the nonlinearity if the rainfall in practice. This study attend to address a method which can model the nonlinearity in order to derive better rainfall intensity formula for the estimation of probable rainfall depth. The results show that genetic algorithm is more reliable and accurate than trial-and-error method or nonlinear programming technique(Powell's method) in the derivation of the rainfall intensity formula.

  • PDF

Investigation on Effect of Rainfall on Performance of Soil-Reinforced Regtaining Wall (강우가 보강토 옹벽의 거동에 미치는 영향에 관한 연구)

  • Yoo, Chung-Sik;Jung, Hyuk-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.2 no.3
    • /
    • pp.47-55
    • /
    • 2003
  • This paper presents the two field walls that demonstrate the effect of rainfall on the performance of soil-reinforced retaining wall. A field test wall constructed in Geotechnical Experimental Site at Sungkyunkwan University has been monitored for more than 8 months to study the long-term behavior of soil-reinforced retaining wall. The measured data showed a good correlation between rainfall and wall movement after wall completion. A case of failed soil-reinforced retaining wall also is presented to highlight the effect of rainfall on the performance of soil-reinforced retaining wall. Implications of the findings are discussed.

  • PDF

Frequency Analyses for Extreme Rainfall Data using the Burr XII Distribution (Burr XII 모형을 이용한 우리나라 극한 강우자료 빈도해석)

  • Seo, Jungho;Shin, Ju-Young;Jung, Younghun;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.335-335
    • /
    • 2018
  • 최근 이상기후현상으로 지구상의 여러 지역에서 극치 수문 사상의 발생 빈도와 강도가 날로 증가하고 있는 추세이다. 이에 대해 수공구조물의 설계를 위한 극치강우사상의 빈도해석에 있어서 적절한 확률분포모형의 적용은 매우 중요하다. 이에 수문통계분야에서는 generalized extreme value(GEV), generalized logistic(GLO), Gumbel(GUM) 모형과 같은 극치 분포를 이용한 수문통계적 특성에 대한 접근이 주로 이루어지고 있다. 하지만 우리나라 강우 사상의 경우 GEV 분포와 GUM 분포가 비교적 적합한 것으로 알려져 있지만 하나의 형상매개변수를 가지고 있어 분포 모형이 표현할 수 있는 통계적 특성에 한계를 가지고 있다. 기존의 GEV나 GUM분포로는 적절히 재현되지 않는 자료들을 분석하기 위해서 두 개의 형상매개변수를 가지는 분포형에 대한 연구가 진행되고 있다. 이에 본 연구에서는 두 개의 형상매개변수를 가지는 Burr XII 분포형의 우리나라 극한 강우자료에 대한 적용성을 평가하였다. Burr XII 분포형은 gamma나 exponential 분포 모형처럼 양의 확률변수만을 가지고, Cauchy나 Pareto 분포 모형처럼 두꺼운 꼬리(heavy-tailed distribution) 형상을 나타내기 때문에 비교적 큰 확률변수가 빈번히 나타나는 극치사상에도 적합한 것으로 알려져 있다. 이를 위해 Burr XII 분포 모형을 이용하여 우리나라 강우자료에 대해 지점빈도해석 및 지역빈도해석을 수행하고 우리나라 강우자료에 비교적 적합하다고 알려진 분포인 GEV, GLO, GUM 분포형을 통해 산정된 결과와 비교하였다.

  • PDF

A STUDY ON THE VARIATION OF DESIGN FLOOD DUE TO CLIMATE CHANGE IN THE URBAN CATCHMENT : A CASE STUDY ON THE HYOJA DRAINAGE BASIN IN SEOUL (기후변화에 따른 도시유역의 확률홍수량 변화에 관한 연구 : 서울시 효자배수분구를 대상으로)

  • Hwang, Jeongyoon;Kim, Hosoung;Ahn, Jeonghwan;Ahn, Hyunjun;Jeong, Changsam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.183-183
    • /
    • 2018
  • 최근 국지성 호우와 홍수, 그리고 극심한 가뭄과 같은 기후변화로 인한 극치수문현상이 빈번하게 관측되고 있다. 이는 과거와는 다른 양상의 강우사상으로 광화문(2010), 강남역(2010), 청계천(2010), 청주(2017), 부산(2017) 등 주요 도심지역에 내수침수로 인한 막대한 인명, 재산 피해를 발생시켰으며, 피해의 빈도와 강도가 증가되고 있는 추세이다. 특히 기후변화에 따른 강우강도의 증가는 설계홍수량의 변화를 초래하며, 그로 인해 홍수 위험도 증가와 치수안전도 감소 등 수공구조물의 설계기준에 불확실성을 증가시키는 원인이 되고 있다. 최근 국내에서도 기후변화에 따른 수공시설물 설계빈도 상향에 대한 필요성이 대두되고 있으나 기후변화의 불확실성 및 기후시나리오의 한계로 인해 정량적 분석결과가 제시되지 않아 정책 수립에 반영하기 현실적으로 어려운 상황이다. 본 연구에서는 기후변화에 따른 홍수특성에 대한 도시유역의 영향을 평가하기 위하여 서울 효자배수분구를 대상유역으로 선정하고, 과거관측자료 기준 S0 대비 상세화 기법(Downscaling) 및 편의보정(Bias Correlation)으로 생성된 RCP 4.5 기후시나리오 HadGEM3-RA(RCM)모델을 통해 생산된 S1, S2, S3 기간의 확률강우량의 변화를 평가하였다. 이때 확률분포형은 Gumbel, 매개변수 추정은 최우도법(ML)을 사용하였고, 도시유출모형을 이용하여 최대첨두홍수량 및 침수면적 산정하고 기후변화 기간별 변동성을 분석하였다. 평가 결과 대부분의 도시배수시설물의 설계빈도인 10년빈도를 3사분위값을 기준으로 할 때 50년과 70년 이상의 미래를 가정할 경우 각각 약 10%, 20%의 확률 홍수량이 증가가 예상되었다. 이러한 결과 현재 구축되어 있는 배수시스템의 설계빈도를 크게 상회하는 값으로 도시배수시스템에 많은 어려움을 줄 것으로 예상되며, 정량적 평가 결과가 기후변화 적응 대책 신규 시설물 설계시 참고할 수 있는 기초자료로 활용될 것으로 판단된다.

  • PDF

Analysis of Saturation Depth by Rainfall Intensity and Soil Conditions on Slope (비탈면 침투해석시 지반 및 강우조건에 의한 포화깊이 분석)

  • Lee, Seung-Woo;Jang, Bhum-Soo;Kim, Sung-Ho;Heo, In-Young;Hong, Suk-Pyo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.4
    • /
    • pp.63-69
    • /
    • 2012
  • Climate change, according to the country to increase locality of slope collapse of heavy disaster, such as increasing the likelihood and prior in order to prevent these disasters, "Slope construction design standards (Ministry of Land, 2011)," is prescribed in the relevant guidelines. In recent years, guidelines Slope Stability Analysis of the existing methods when the rainy season infiltration of rainfall, taking into account have been revised to perform more realistic. In this study, according these trends to the analysis of saturation depth by rainfall intensity and soil conditions. Results as a whole, the larger the saturated hydraulic conductivity and depth of rainfall intensity also showed a tendency to rise in proportion but MH, CL did not occur in the saturation region. Analysis of antecedent rainfall case also reflects an overall increase of depth in the saturated, rainfall in many cases is less than the growth rate was higher in the saturation region.

An Analysis of First Flush Phenomenon of Non-point Source Pollution during Rainfall-Runoff Events from Impervious Area (불투수성 지역의 강우유출수에 대한 비점오염물질의 초기유출현상 분석)

  • Ahn, Tae-Ung;Bum, Bong-Su;Kim, Tae-Hoon;Choi, I-Song;Oh, Jong-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.9
    • /
    • pp.643-653
    • /
    • 2013
  • In this study, trend analysis was performed by various runoff analysis method of Non-point Pollution Source(NPS) at the impervious area. The characteristics of rainfall at impervious area appeared to be influenced by rainfall strength and it appeared that first flush phenomenon occurs often if rainfall strength acts largely. It is judged that the measure is required to be prepared against that now that concentration difference of non-point pollution source appeared to be big by precedent number of days of no rainfall. As the result of calculating Decrease Rate (DR) by first flush of non-point pollution source, it is judged that it is important to prepare the measure against the pollutants about initial rain and it is necessary to calculate the capacity of non-point pollution source processing facilities regarding that now that the non-point pollution source integrated at impervious area showed the characteristics that are flowed out in high concentration by initial rain in case of non-rainfall considering the characteristics of non-point pollution source at impervious area. When taking 50% of non-point pollution source as the standard for decrease rate that was evaluated previously, it appeared as 15~60 min in case of TSS and it appeared as 30~90 min in case of organic compound, but the characteristic whose decrease rate is below 50% also appeared even till rainfall-runoff ends. Based on that, it is judged that it could be used as the reference when designing the structural BMPs facilities later.

Analysis of Rate of Discharge Change on Urban Catchment Considering Climate Change (기후변화를 고려한 도시유역의 유출량 변화율 분석)

  • Kim, Hosoung;Hwang, Jeongyoon;Ahn, Jeonghawan;Jeong, Changsam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.645-654
    • /
    • 2018
  • Extreme rainfall events caused severe damage to human life and property due to the inundation in major urban areas. In particular, the increase in the intensity of rainfall due to climate change causes changes in the design flood discharge. As a result, it causes uncertainty in the design criteria of hydraulic structures. However, quantitative analysis results have not been provided due to the limitations of climate scenarios and the uncertainty in climate changes. Therefore, this research chose Bulgwangcheon basin as the target basin to analysis the discharge considering climate change. As the result, it is necessary to strengthen design standards since the amount of discharge increased by 14.2% even in the near future.

Reliable Assessment of Rainfall-Induced Slope Instability (강우로 인한 사면의 불안정성에 대한 신뢰성 있는 평가)

  • Kim, Yun-Ki;Choi, Jung-Chan;Lee, Seung-Rae;Seong, Joo-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.53-64
    • /
    • 2009
  • Many slope failures are induced by rainfall infiltration. A lot of recent researches are therefore focused on rainfall-induced slope instability and the rainfall infiltration is recognized as the important triggering factor. The rainfall infiltrates into the soil slope and makes the matric suction lost in the slope and even the positive pore water pressure develops near the surface of the slope. They decrease the resisting shear strength. In Korea, a few public institutions suggested conservative slope design guidelines that assume a fully saturated soil condition. However, this assumption is irrelevant and sometimes soil properties are misused in the slope design method to fulfill the requirement. In this study, a more relevant slope stability evaluation method is suggested to take into account the real rainfall infiltration phenomenon. Unsaturated soil properties such as shear strength, soil-water characteristic curve and permeability for Korean weathered soils were obtained by laboratory tests and also estimated by artificial neural network models. For real-time assessment of slope instability, failure warning criteria of slope based on deterministic and probabilistic analyses were introduced to complement uncertainties of field measurement data. The slope stability evaluation technique can be combined with field measurement data of important factors, such as matric suction and water content, to develop an early warning system for probably unstable slopes due to the rainfall.

Urban Watershed Runoff Analysis Using Urban Runoff Models (도시유출 모형을 이용한 도시화 유역의 유출 해석)

  • Jeong, Dong-Guk;Lee, Beom-Hui
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.1
    • /
    • pp.75-85
    • /
    • 2003
  • Urban rainfall-runoff procedures are more complex than the agricultural procedures due to the spreading and development of town. And the applications of theses models are more difficult due to the change of real basins. In this study, I applied SWMM and Expert System to get runoff characteristics of an urbanized basin. Noen in Daejeon is selected as a study basin. Real basin data of facilities, rainfall, runoff, and various rainfall intensity equations are used. An Expert System is used to get the parameters of this model. These results can be applied to analyze the reaction tendencies of the urban basin with the time distributions of design rainfall and the urbanization.