• Title/Summary/Keyword: 설계강수량

Search Result 139, Processing Time 0.022 seconds

Analyzing Spatial and Temporal Variation of Ground Surface Temperature in Korea (국내 지면온도의 시공간적 변화 분석)

  • Koo Min-Ho;Song Yoon-Ho;Lee Jun-Hak
    • Economic and Environmental Geology
    • /
    • v.39 no.3 s.178
    • /
    • pp.255-268
    • /
    • 2006
  • Recent 22-year (1981-2002) meteorological data of 58 Korea Meteorological Adminstration (KMA) station were analyzed to investigate spatial and temporal variation of surface air temperature (SAT) and ground surface temperature (GST) in Korea. Based on the KMA data, multiple linear regression (MLR) models, having two regression variables of latitude and altitude, were presented to predict mean surface air temperature (MSAT) and mean ground surface temperature (MGST). Both models showed a high accuracy of prediction with $R^2$ values of 0.92 and 0.94, respectively. The prediction of MGST is particularly important in the areas of geothermal energy utilization, since it is a critical parameter of input for designing the ground source heat pump system. Thus, due to a good performance of the MGST regression model, it is expected that the model can be a useful tool for preliminary evaluation of MGST in the area of interest with no reliable data. By a simple linear regression, temporal variation of SAT was analyzed to examine long-term increase of SAT due to the global warming and the urbanization effect. All of the KMA stations except one showed an increasing trend of SAT with a range between 0.005 and $0.088^{\circ}C/yr$ and a mean of $0.043^{\circ}C/yr$. In terms of meteorological factors controlling variation of GST, the effects of solar radiation, terrestrial radiation, precipitation, and snow cover were also discussed based on quantitative and qualitative analysis of the meteorological data.

Performance Evaluation of Water Circulation Facilities with Infiltration and Retention Functions (침투 및 저류 기능을 가진 물 순환 시설의 효과 평가)

  • Hong, Jung Sun;Maniquiz-Redillas, Marla C.;Kim, Ree Ho;Lee, Seon Ha;Kim, Lee-Hyung
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.4
    • /
    • pp.305-310
    • /
    • 2015
  • In 2014, the city of Seoul revised the ordinance regarding water-cycle restoration in the Seoul Metropolitan areas by incorporating the 'Low Impact Development (LID)' policy. The new ordinance plan will utilize 630 mm or almost 45 to 50% of annual rainfall until 2050 by means of providing a rainwater management system consisting of infiltration, retention and vegetation. The LID is believed to be the key to achieving the target requirements, specifically in development projects. This research was performed to evaluate the stormwater runoff and pollutant reduction performance of three different LID facilities (water circulation facilities) including an infiltration inlet, bioretention swale, and permeable pavement constructed in Seoul City. Results show that among the water circulation facilities, the permeable pavement achieved the highest runoff reduction as it was able to entirely capture and infiltrate the runoff to the ground. However, in order to attain a long-term performance it is necessary to manage the accumulated sediment and trapped pollutants in the landscape areas through other water circulation techniques such as through soil erosion control. In terms of pollutant reduction capability, the infiltration inlet performed well since it was applied in highly polluted areas. The bioretention facility integrating the physico-chemical and biological mechanisms of soil, microorganisms and plants were able to also achieve a high runoff and pollutant reduction. The water circulation facilities provided not only benefits for water circulation but also various other benefits such as pollutant reduction, ecological restoration, and aesthetic functions.

Development of App. for Visualization of Micro Hydro Power Potential (초소수력 발전 잠재량의 가시화를 위한 앱 개발)

  • Kim, Dong Hyun;Yang, Chang Wook;Lee, Seung Oh
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.4
    • /
    • pp.1-11
    • /
    • 2017
  • Interest in all kinds of renewable energies has been highly increased while the micro-small-hydro power(MSHP) development has shown relatively slowly growth because of the negative public recognition about dam site development. It is, however, announced that the micro-SHP shows higher energy conversion efficiency compared to other renewable energies and does not emit any carbon dioxide. Thus, it is concerned about the development and application of micro-SHP as an alternative energy. In this study, the application for Android was exploited with Eclipse to visualize readily the potential realizable amount of hydropower by micro-SHP. With this application, we can select the region from the map, obtain the design discharge of the selected site was calculated with HEC-HMS, presented by U.S. Army of Corp. and perform the simply economic analysis in sequence. Yeongwol in Gangwon-do Province, Korea was chosen as the target area since historically abundant precipitation was found and it is possible to obtain fundamental data from WAMIS. Results from this study could be expanded the whole region of Korea. Also, the initial investment cost would be reduced if the location for micro-SHP would be determined properly, because this application can help us easily select and examine the potential micro-SHP sites without on-the-spot visit.

Development of Examination Model of Weather Factors on Garlic Yield Using Big Data Analysis (빅데이터 분석을 활용한 마늘 생산에 미치는 날씨 요인에 관한 영향 조사 모형 개발)

  • Kim, Shinkon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.480-488
    • /
    • 2018
  • The development of information and communication technology has been carried out actively in the field of agriculture to generate valuable information from large amounts of data and apply big data technology to utilize it. Crops and their varieties are determined by the influence of the natural environment such as temperature, precipitation, and sunshine hours. This paper derives the climatic factors affecting the production of crops using the garlic growth process and daily meteorological variables. A prediction model was also developed for the production of garlic per unit area. A big data analysis technique considering the growth stage of garlic was used. In the exploratory data analysis process, various agricultural production data, such as the production volume, wholesale market load, and growth data were provided from the National Statistical Office, the Rural Development Administration, and Korea Rural Economic Institute. Various meteorological data, such as AWS, ASOS, and special status data, were collected and utilized from the Korea Meteorological Agency. The correlation analysis process was designed by comparing the prediction power of the models and fitness of models derived from the variable selection, candidate model derivation, model diagnosis, and scenario prediction. Numerous weather factor variables were selected as descriptive variables by factor analysis to reduce the dimensions. Using this method, it was possible to effectively control the multicollinearity and low degree of freedom that can occur in regression analysis and improve the fitness and predictive power of regression analysis.

Assessment of Small Mountainous Catchment Runoff at Yongdam-dam Guryang (산지 소규모 유역의 유출 특성 평가-용담 구량천)

  • Kim, Seong-Goo;Chang, Hyung-Joon;Lee, Hyo-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.633-641
    • /
    • 2018
  • The risk of disasters, such as floods and drought, has increased. Reliable hydrological data is important for analyzing the water resource and designing hydraulic structure to manage these risks. The Yongdam Guryang river catchment located in the central of Korea is the research catchment of K-water and UNESCO IHP, and the hydrological data, such as rainfall, runoff, evapotranspiration, etc. has been observed at the catchment. The aim of this study was to assess the runoff characteristics of the small mountainous catchment of Korea based on the observed hydrological data, and the Probability Distributed Model was applied as the Rainfall-Runoff Model at the Yongdam Guryang river catchment. The hydrological data was divided into the wet period from June to September and dry period from October to May according to data analysis. The runoff ratio was 0.27~0.41 in the wet period and 0.30~0.45 in the dry period. The calibration result by the Probability Distributed Model showed a difference in the calibrated model parameters according to the periods. In addition, the model simulated the runoff accurately except for the dry period of 2015, and the result revealed the applicability of the PDM. This study showed the runoff characteristics of the small mountainous catchment by dividing the hydrological data into dry and wet periods.

Application of Artificial Neural Network for estimation of daily maximum snow depth in Korea (우리나라에서 일최심신적설의 추정을 위한 인공신경망모형의 활용)

  • Lee, Geon;Lee, Dongryul;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.10
    • /
    • pp.681-690
    • /
    • 2017
  • This study estimated the daily maximum snow depth using the Artificial Neural Network (ANN) model in Korean Peninsula. First, the optimal ANN model structure was determined through the trial-and-error approach. As a result, daily precipitation, daily mean temperature, and daily minimum temperature were chosen as the input data of the ANN. The number of hidden layer was set to 1 and the number of nodes in the hidden layer was set to 10. In case of using the observed value as the input data of the ANN model, the cross validation correlation coefficient was 0.87, which is higher than that of the case in which the daily maximum snow depth was spatially interpolated using the Ordinary Kriging method (0.40). In order to investigate the performance of the ANN model for estimating the daily maximum snow depth of the ungauged area, the input data of the ANN model was spatially interpolated using Ordinary Kriging. In this case, the correlation coefficient of 0.49 was obtained. The performance of the ANN model in mountainous areas above 200m above sea level was found to be somewhat lower than that in the rest of the study area. This result of this study implies that the ANN model can be used effectively for the accurate and immediate estimation of the maximum snow depth over the whole country.

Development of a New Clay Roof Tiles for the Reduction of Weight in Korean-Style Roof (한옥지붕 경량화를 위한 신형 한식기와 개발)

  • Park, Jin Cheol;Chung, Chan Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.765-771
    • /
    • 2019
  • New Korean-style clay roof tiles have been developed with a focus on significantly reducing the roof's weight while maintaining the strength, absorption rate, and freeze durability. The backflow of rain water through the gaps between roof tiles is prevented by employing baffles and a groove to accelerate water flow. With the new roof tiles, dry construction of a roof is possible without requiring soil. By using the dry construction method with the new roof tiles, a reduction in roof weight of more than 80% is possible compared to the conventional wet construction method with soil. In the case of a traditional Korean-style house with a building area of 99 square meters, the roof weight can be reduced from 135 tons to 24 tons. The new tiles satisfy the KS requirements and are more than 30% lighter than traditional roof tiles. A roof constructed using the new tiles showed no water leaks when exposed to typhoon-class winds with speeds of 17 m/s and 200 mm/h of rainfall, which is 60% higher than the Korea rainfall record. The new roof tiles also have advantages of economic efficiency, workability, maintenance, and aseismicity compared to previous Korean-style roof tiles.

Growth Characteristics and Yield Comparisons of Domestic and Foreign Italian ryegrass (Lolium multiflorum Lam) Varieties in Yecheon area of Korea (예천지역에서 이탈리안 라이그라스 국내육성 품종과 외국품종의 생육특성 및 수량성 비교)

  • Kim, Ki-Yong;Lee, Sang-Hoon;Ji, Hee Chung;Hwang, Tae-Young;Lee, Ki-Won;Park, Sung Min
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.35 no.1
    • /
    • pp.43-49
    • /
    • 2015
  • This experiment was conducted to evaluate the agronomic characteristics and forage productivity of Italian ryegrass cultivars in Yecheon, Kyeongbuk from 2011 to 2013. The experimental design was a randomized complete block design (RCBD) with three replications. Italian ryegrass cultivars were seeded on Sep. 26 in 2011 and Sep. 25 in 2012. The Italian ryegrass cultivars were harvested on the heading date of the variety. The cold-resistance of domestic cultivars was stronger than other foreign varieties. Among early-maturing cultivars, the dry matter (DM) yield of the "Kowinearly" was 10,031 kg/ha, which was significantly higher than that of other cultivars (p<0.05). In medium-maturing cultivars, the DM yield of the "Kowinmaster" and "Tam 90" were 10,484 and 8,191 kg/ha, respectively. Of the two, the former's DM yield was higher than the latter's (p<0.05). Among late-maturing cultivars, the DM yield of "Hwasan 104" was 10,641 kg/ha, which was similar to that of "Hwasan 101" and significantly higher than the other late-maturing cultivars (p<0.05). According to the results obtained from this study, an early-maturing variety with cold-tolerance and high productivity is required for the paddy field cultivation of an Italian ryegrass cultivar after rice harvest in the mid-northern region of Korea. A medium- or late-maturing variety is more advantageous for the field cultivation of the maximum quantity that is possible. In conclusion, to select which variety/ies to grow, the climate of the growing area, weather conditions, and the cropping system must all be considered.

Hydrologic and Hydraulic Factors Affecting the Long-term Treatment Performance of an Urban Stormwater Tree Box Filter (도시 강우유출수를 처리하는 나무여과상자의 장기 처리효율에 영향을 주는 수리학적 및 수문학적 인자 연구)

  • Geronimo, Franz Kevin F.;Hong, Jungsun;Kim, Lee-Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.715-721
    • /
    • 2017
  • Tree box filters, an example of bioretention systems, were compacted and versatile urban stormwater low impact development technique which allowed volume and water quality treatment performance to be adjusted based on the hydrologic, runoff quality and catchment characteristics. In this study, the overall performance of a 6 year-old tree box filter receiving parking lot stormwater runoff was evaluated. Hydrologic and hydraulic factors affecting the treatment performance of the tree box filter were also identified and investigated. Based on the results, the increase in rainfall depth caused a decrease in hydrologic and hydraulic performance of the tree box filter including volume, average flow, and peak flow reduction (r = -0.53 to -0.59; p<0.01). TSS, organics, nutrients, and total and soluble heavy metals constituents were significantly reduced by the system through media filtration, adsorption, infiltration, and evapotranspiration mechanisms employed in the tree box filter (p<0.001). This significant pollutant reduction by the tree box filter was also found to have been caused by hydrologic and hydraulic factors including volume, average flow, peak flow, hydraulic retention time (HRT) and runoff duration. These findings were especially useful in applying similarly designed tree box filter by considering tree box filter surface area to catchment area of less than 1 %.

Frequency Analysis Using Bootstrap Method and SIR Algorithm for Prevention of Natural Disasters (풍수해 대응을 위한 Bootstrap방법과 SIR알고리즘 빈도해석 적용)

  • Kim, Yonsoo;Kim, Taegyun;Kim, Hung Soo;Noh, Huisung;Jang, Daewon
    • Journal of Wetlands Research
    • /
    • v.20 no.2
    • /
    • pp.105-115
    • /
    • 2018
  • The frequency analysis of hydrometeorological data is one of the most important factors in response to natural disaster damage, and design standards for a disaster prevention facilities. In case of frequency analysis of hydrometeorological data, it assumes that observation data have statistical stationarity, and a parametric method considering the parameter of probability distribution is applied. For a parametric method, it is necessary to sufficiently collect reliable data; however, snowfall observations are needed to compensate for insufficient data in Korea, because of reducing the number of days for snowfall observations and mean maximum daily snowfall depth due to climate change. In this study, we conducted the frequency analysis for snowfall using the Bootstrap method and SIR algorithm which are the resampling methods that can overcome the problems of insufficient data. For the 58 meteorological stations distributed evenly in Korea, the probability of snowfall depth was estimated by non-parametric frequency analysis using the maximum daily snowfall depth data. The results of frequency based snowfall depth show that most stations representing the rate of change were found to be consistent in both parametric and non-parametric frequency analysis. According to the results, observed data and Bootstrap method showed a difference of -19.2% to 3.9%, and the Bootstrap method and SIR(Sampling Importance Resampling) algorithm showed a difference of -7.7 to 137.8%. This study shows that the resampling methods can do the frequency analysis of the snowfall depth that has insufficient observed samples, which can be applied to interpretation of other natural disasters such as summer typhoons with seasonal characteristics.