• 제목/요약/키워드: 선형 회귀 모델

검색결과 443건 처리시간 0.037초

선형 회귀를 이용한 쌀 가격 예측 모델의 유의미한 변수 추출 (Analyzing Significant Variables from a Linear Regression-Based Prediction Model for Rice Prices)

  • 서진경;최다정;고광호;백주련
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.39-42
    • /
    • 2022
  • 쌀을 주식으로 하는 우리나라에서, 쌀의 가격에 영향을 미치는 변수를 찾는 것은 유의미한 연구이다. 본 논문에서는 쌀 가격을 예측하는 모델에 포함되는 여러 변수 가운데 상대적인 중요도가 낮은 변수를 제거하고 유의미한 변수만을 남기고자 한다. 이를 위해 기상, 수확량, 소비자물가의 10년 치 정보를 수집하고 정제한 결과 총 2460일, 7개 지역에서 추출된 17,219개의 데이터를 이용하였다. 모델 평가 결과, 모든 변수를 포함한 모델의 RMSE는 166.0759, 단계적으로 계수가 작은 9개의 변수를 제거한 최종적인 모델의 RMSE는 168.5576으로 유의미한 차이를 보이지 않았다. 최종적으로 남은 변수는 총 10개로 평균 기온, 평균 풍속, 합계 일사, 평균 지면 온도, 0.5M 평균 습도, 4.0M 평균 습도, 10CM 일 토양 수분, 30CM 일 토양 수분, 50CM 일 토양 수분, 전년도 생산량이 포함된다.

  • PDF

세계 경제 지표를 활용한 머신러닝 기반 국제 경유 가격 예측 모델 개발 (International Diesel Price Prediction Model based on Machine Learning with Global Economic Indicators)

  • 최아린;박민서
    • 문화기술의 융합
    • /
    • 제9권6호
    • /
    • pp.251-256
    • /
    • 2023
  • 국제 경유 가격은 산업, 교통 및 에너지 생산과 같은 여러 분야에서 중요한 역할을 수행하며, 세계 경제와 국제 무역에도 큰 영향을 미친다. 특히, 국제 경유 가격의 상승은 소비자에게 부담을 주고 인플레이션의 원인이 될 수있다. 그러나 기존 연구들은 주로 휘발유에 초점을 맞추어 진행되었다. 따라서 본 연구는 국제 경유 가격 예측 모델을 제안하고자 한다. 이를 위해 다양한 세계 경제 지표들을 활용하여 머신러닝 방법론 중 하나인 선형 회귀 모델로 학습한다. 해당 모델은 세계 경제 지표들과 국제 경유 가격 간의 관계를 명확하게 파악함과 동시에 높은 정확도로 예측한다. 이는 시장 변화를 비롯한 전반적인 경제 흐름 파악에 도움이 될 것으로 기대된다.

희소 회귀자를 고려한 3 차원 인체 모델 다운 샘플링 (Down-sampling SMPL Model with Sparse Joint Regressor)

  • 박소현;강지우
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.631-633
    • /
    • 2022
  • 인체 선형 모델 (이하 SMPL 모델)은 3 차원 사람 모델로, 3 차원 컴퓨터 그래픽 기술이 발전함에 따라 활용 범위가 확대될 수 있다. 다운샘플링 (Down-sampling)으로 여러 해상도의 SMPL 모델이 사용가능 하다면, 3 차원 컴퓨터 그래픽 기술 발전에 도움이 될 것이다. 3 차원 모델의 다운샘플링을 위한 많은 메쉬 단순화 (Mesh simplification) 기법이 존재한다. 하지만 기존의 기법만을 사용하면 다운 샘플링 한 모델의 자세 (Pose)를 변경했을 때 기대한 것과 다른 결과물이 만들어지는 문제가 발생한다. 본 논문에서는 가장 가까운 정점으로 SMPL 모델의 관절 회귀자 (Joint regressor) 값을 넘겨주어 문제를 해결하는 다운샘플링 (Down-sampling) 방법을 제시한다.

반복선형회귀를 이용한 수신 신호 세기와 이동성 정보에 기반한 1차원 위치 추정 (One-dimensional Positioning using Iterative Linear Regression Based on Received Signal Strength and Mobility Information)

  • 이동준;김다영;이은혜
    • 한국항행학회논문지
    • /
    • 제24권2호
    • /
    • pp.128-133
    • /
    • 2020
  • 본 연구에서는 위치추정을 하는 경우 선형회귀법을 반복적으로 적용하여 신호의 경로 손실을 추정하는 방법을 제안한다. 제안한 방식에서는 단말이 이동하면서 여러 위치에서 측정한 수신신호세기와 가속도계로 구한 측정 위치들 사이의 거리 정보를 이용하여 전송 비콘부터의 경로 손실을 선형회귀를 이용하여 추정한다. 전송 비콘과 특정 위치사이의 거리에 대하여 여러 잠정값들을 가정하고, 각 잠정값에 대하여 선형회귀식을 구한다. 이 선형회귀식들 중에서, 기준 수신 세기에 가장 가까운 식을 이용하여 송신 비콘와 목표 위치사이 거리를 구한다. 테스트 결과, 제안 방식은 단순 경로 손실 모델보다 훨씬 더 높은 정확도를 보인다.

풍속 예측 보정을 위한 Genetic Programing 탐색 기법의 개선 (Improvement of Search Method of Genetic Programing for Wind Prediction MOS)

  • 오승철;서기성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1349-1350
    • /
    • 2015
  • 풍속은 다른 기상요소들보다 순간 변동이 심하고 국지성이 강하여 수치 예보 모델만으로 예측의 정확성을 높이기가 어렵다. 기상청의 단기 풍속 예보는 전 지구적 통합 예보모델인 UM(Unified Model)의 예측값에 MOS(Model Output Statictics)를 통한 보정을 수행하며, 보정식의 생성에 다중선형회귀분석 방법을 사용한다. 본 연구자는 유전프로그래밍(Genetic Programming)을 이용한 비선형 회귀분석 기반의 보정식 생성을 통하여 이를 개선한 바 있는데, 본 연구에서는 보다 향상된 성능을 얻기 위하여 GP 기법 측면에서 Automatically Defined Functions과 다군집(Multiple Populations) 수행을 통해 성능을 높이고자 한다.

  • PDF

인공신경망과 정상 웨이블렛 변환을 활용한 감조하천 수위 예측 (Prediction of the Water Level of the Tidal River using Artificial Neural Networks and Stationary Wavelets Transform)

  • 이정하;황석환
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.357-357
    • /
    • 2021
  • 홍수로 인한 침수피해 발생을 최소화하기 위해 정확한 하천의 수위 예측과 리드타임 확보가 매우 중요하다. 특히 조석현상의 영향을 받는 감조하천의 경우 기존의 물리적 수문모형의 적용이 제한되어 하천수위 예측의 정확도가 떨어지기도 한다. 따라서 본 연구에서는 이러한 감조하천 수위 예측의 정확도를 높이기 위해 조석현상을 분리하고 인공신경망을 활용하는 하이브리드 모델을 제안 하였으며 다중 선형회귀분석과 비교 분석하였다. 감조하천에 위치한 교량의 수위데이터에서 Stationary Wavelet Transform으로 조석현상을 분리하였으며, 이외의 수위에 영향을 주는 time series data와 인공신경망(ANN)을 활용하여 1시간, 2시간, 3시간 후의 수위를 예측하였다. 하이브리드 모델은 96% 이상의 정확도를 보였으며 다중 선형회귀 분석과 비교하여도 높은 정확성을 보여주었다.

  • PDF

TBM 굴진자료의 다변량 회귀분석에 의한 암반대응형 TBM의 설계모델 도출 (Rock TBM design model derived from the multi-variate regression analysis of TBM driving data)

  • 장수호;최순욱;이규필;배규진
    • 한국터널지하공간학회 논문집
    • /
    • 제13권6호
    • /
    • pp.531-555
    • /
    • 2011
  • 본 연구에서는 암반대응형 TBM의 소요 사양 산출과 커터헤드 설계를 위한 통계모델을 도출하고자 하였다. 이를 위하여 다양한 암반 조건에서 수집된 871개의 TBM 굴진자료와 51개의 암석 선형절삭시험 결과에 대해 다변량 회귀분석을 실시하여, 다양한 암석 특성과 절삭 조건을 고려한 최적 모델을 도출하였다. 회귀분석을 통해 도출된 설계모델들을 2개의 쉴드터널 현장에 적용한 결과, 커터 관입깊이, 커터 작용력 및 커터 간격과 같은 TBM 핵심 설계항목의 예측결과들이 실제 현장의 굴진결과와 잘 부합되는 것으로 나타났다.

해양사고 예보 시스템 개발 (II): 해양사고 예측 모델 구현 (Development of Marine Casualty Forecasting System (II): Implementation of Marine Casualty Prediction Model)

  • 임정빈
    • 한국항해항만학회지
    • /
    • 제27권5호
    • /
    • pp.487-492
    • /
    • 2003
  • 이 논문에서는 해양사고 예보 시스템(K-MACFOS) 개발의 주요부분 중 하나인 해양사고 예측 모델 구현에 관해서 기술했다. 셀분할 선형 파라미터 모델(CD-LIP)을 제안하여 그 유효성을 Baltic 모델과 수정 LIP 모델과 비교하면서 검토하였다. 회귀 분산분석기법에 의한 평가결과, CD-LIP 모델이 연구대상 해역의 해양사고 수량화 D/B에 최적 성능을 나타냈다.

인공신경망 기법을 이용한 태풍 강도 및 진로 예측 (Prediction of Tropical Cyclone Intensity and Track Over the Western North Pacific using the Artificial Neural Network Method)

  • 최기선;강기룡;김도우;김태룡
    • 한국지구과학회지
    • /
    • 제30권3호
    • /
    • pp.294-304
    • /
    • 2009
  • 북서태평양에서 발생한 태풍에 대해 발생 후 5일 동안 12시간 간격으로 태풍의 강도 및 진로를 예측할 수 있는 인공신경망 모델을 개발하였다. 사용되어진 예측인지는 CLIPER(발생 위치 강도 일자), 운동학적 파라미터(연직바람시어, 상층발산, 하층상대와도), 열적 파라미터(상층 상당온위, ENSO, 상층온도, 중층 상대습도)로 구성되어졌다. 예측인자의 특성에 따라 일곱개의 인공신경망 모델들이 개발되었으며, CLIPER와 열적 파라미터가 조합된(CLIPER-THERM) 모델이 가장 좋은 예측성능을 보였다. 이 CLIPER-THERM 모델은 강도 및 진로 모두에서 동절기보다 하절기에 더 나은 예측성능을 나타내었다. 또한 태풍의 발생이 아열대 서태평양의 남동쪽에 위치할수록 강도예측에서는 큰 오차를 보였고, 진로예측에서는 아열대 서태평양의 북서쪽에서 발생할수록 큰 오차를 보였다. 이후 인공신경망 모델의 예측성능을 검증하기 위해 같은 예측인자들을 이용하여 다중선형회귀모델을 개발하였으며, 결과로서 비선형 통계기법인 인공신경망 모델이 다중선형회귀모형보다는 더 나은 예측성능을 보였다.

회귀 분석을 통한 경마 순위 예측 모형 (A Model for Predicting Horse Racing Ranking by Regression Analysis)

  • 허태성;송민섭;고동수
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.15-16
    • /
    • 2022
  • 본 논문에서는 국내 합법 사행산업의 가장 큰 비중을 차지하는 경마에 대한 데이터 분석 모델을 제공하여 건전한 국민 여가 스포츠로 인식 개선을 제안한다. 고배당을 강조하는 경마 예측론이 성행하며 경마가 스포츠가 아닌 도박에 가깝다는 부정적 이미지를 개선하고자 부모마의 수득 상금을 이용한 순위 분석 모델을 제공한다. 현재 국내 경마 경기는 서울, 부산, 제주에서 개최되며, 이 중 서울 지역 경마 데이터를 분석 데이터로 하였다. 분석에 이용한 데이터는 2019년 3월부터 2022년 3월까지의 경주 성적, 경주마 정보, 부모마 수득상금을 이용하였다. 분석에는 선형 회귀 모형, 랜덤 포레스트 회귀 모형 (Breiman, 2001)을 이용하였다. 분석은 Python 을 이용하였으며, Python에서 제공하는 다양한 라이브러리를 이용하여 크롤링, 전처리, 분석하였다.

  • PDF