• Title/Summary/Keyword: 선형 회귀 모델식

Search Result 97, Processing Time 0.032 seconds

Development of a Polytropic Index-Based Reheat Gas Turbine Inlet Temperature Calculation Algorithm (폴리트로픽 지수 기반의 재열 가스터빈 입구온도 산출 알고리즘 개발)

  • Young-Bok Han;Sung-Ho Kim;Byon-Gon Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.3
    • /
    • pp.483-494
    • /
    • 2023
  • Recently, gas turbine generators are widely used for frequency control of power systems. Although the inlet temperature of a gas turbine is a key factor related to the performance and lifespan of the device, the inlet temperature is not measured directly for reasons such as the turbine structure and operating environment. In particular, the inlet temperature of the reheating gas turbine is very important for stable operation management, but field workers are experiencing a lot of difficulties because the manufacturer does not provide information on the calculation formula. Therefore, in this study, we propose a method for estimating the inlet temperature of a gas turbine using a machine learning-based linear regression analysis method based on a polytropic process equation. In addition, by proposing an inlet temperature calculation algorithm through the usefulness analysis and verification of the inlet temperature calculation model obtained through linear regression analysis, it is intended to help to improve the level of reheat gas turbine combustion tuning technology.

A Study on the Weight Estimation Model of Floating Offshore Structures using the Non-linear Regression Analysis (비선형 회귀 분석을 이용한 부유식 해양 구조물의 중량 추정 모델 연구)

  • Seo, Seong-Ho;Roh, Myung-Il;Shin, Hyunkyoung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.6
    • /
    • pp.530-538
    • /
    • 2014
  • The weight estimation of floating offshore structures such as FPSO, TLP, semi-Submersibles, Floating Offshore Wind Turbines etc. in the preliminary design, is one of important measures of both construction cost and basic performance. Through both literature investigation and internet search, the weight data of floating offshore structures such as FPSO and TLP was collected. In this study, the weight estimation model was suggested for FPSO. The weight estimation model using non-linear regression analysis was established by fixing independent variables based on this data and the multiple regression analysis was introduced into the weight estimation model. Its reliability was within 4% of error rate.

Determining Input Values for Dragging Anchor Assessments Using Regression Analysis (회귀분석을 이용한 주묘 위험성 평가 입력요소 결정에 관한 연구)

  • Kang, Byung-Sun;Jung, Chang-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.822-831
    • /
    • 2021
  • Although programs have been developed to evaluate the risk of dragging anchors, it is practically difficult for VTS(vessel traffic service) operators to calculate and evaluate these risks by obtaining input factors from anchored ships. Therefore, in this study, the gross tonnage (GT) that could be easily obtained from the ship by the VTS operators was set as an independent variable, and linear and nonlinear regression analyses were performed using the input factors as the dependent variables. From comparing the fit of the polynomial model (linear) and power series model (nonlinear), the power series model was evaluated to be more suitable for all input factors in the case of container ships and bulk carriers. However, in the case of tanker ships, the power supply model was suitable for the LBP(length between perpendiculars), width, and draft, and the polynomial model was evaluated to be more suitable for the front wind pressure area, weight of the anchor, equipment number, and height of the hawse pipe from the bottom of the ship. In addition, all other dependent variables, except for the front wind pressure area factor of the tanker ship, showed high degrees of fit with a coefficient of determination (R-squared value) of 0.7 or more. Therefore, among the input factors of the dragging anchor risk assessment program, all factors except the external force, seabed quality, water depth, and amount of anchor chain let out are automatically applied by the regression analysis model formula when only the GT of the ship is provided.

Development of Models for Estimating Growth of Quinoa (Chenopodium quinoa Willd.) in a Closed-Type Plant Factory System (완전제어형 식물공장에서 퀴노아 (Chenopodium quinoa Willd.)의 생장을 예측하기 위한 모델 개발)

  • Austin, Jirapa;Cho, Young-Yeol
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.326-331
    • /
    • 2018
  • Crop growth models are useful tools for understanding and integrating knowledge about crop growth. Models for predicting plant height, net photosynthesis rate, and plant growth of quinoa (Chenopodium quinoa Willd.) as a leafy vegetable in a closed-type plant factory system were developed using empirical model equations such as linear, quadratic, non-rectangular hyperbola, and expolinear equations. Plant growth and yield were measured at 5-day intervals after transplanting. Photosynthesis and growth curve models were calculated. Linear and curve relationships were obtained between plant heights and days after transplanting (DAT), however, accuracy of the equation to estimate plant height was linear equation. A non-rectangular hyperbola model was chosen as the response function of net photosynthesis. The light compensation point, light saturation point, and respiration rate were 29, 813 and $3.4{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, respectively. The shoot fresh weight showed a linear relationship with the shoot dry weight. The regression coefficient of the shoot dry weight was 0.75 ($R^2=0.921^{***}$). A non-linear regression was carried out to describe the increase in shoot dry weight of quinoa as a function of time using an expolinear equation. The crop growth rate and relative growth rate were $22.9g{\cdot}m^{-2}{\cdot}d^{-1}$ and $0.28g{\cdot}g^{-1}{\cdot}d^{-1}$, respectively. These models can accurately estimate plant height, net photosynthesis rate, shoot fresh weight, and shoot dry weight of quinoa.

Inelastic Displacement Ratio for Strength-limited Bilinear SDF Systems (강도한계 이선형 단자유도 시스템의 비탄성 변위비)

  • Han, Sang-Whan;Lee, Tae-Sub;Seok, Seung-Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.23-28
    • /
    • 2010
  • This study evaluated the effect of vibration, level of lateral yielding strength, site conditions, ductility factor, strain-hardening ratio, and post-capping ratio of the strength limited bilinear SDF systems on the inelastic displacement ratio. The nonlinear response history analysis was conducted using 240 ground motions which were collected at the sites classified as site classes B, C, and D according to the NEHRP. To account for the P-$\Delta$ effects, this study considered negative stiffness ratios ranging from -0.1 to -0.5 of elastic stiffness. Four different damping ratios are used: 2, 5, 10, and 20%. From this study, an equation of inelastic displacement ratio was proposed using nonlinear regression analysis.

N-supplying Capability Evaluation of Corn Field Soils in Pennsylvania (Pennsylvania주 옥수수 재배 토양의 질소공급능력 평가)

  • Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.4
    • /
    • pp.359-367
    • /
    • 1998
  • In order to determine the nitrogen supplying capabilities (NSC) of corn fields, 47 field experiments were performed in Pennsylvania over 3 year from 1986 and NSCs were estimated by the regression analysis with chemical properties and soil attributes. Although the content of $NO_3-N$ in soil showed the best correlation with NSC ($R^2=0.518$), the standardized partial regression coefficient of $NO_3-N$ for NSC was 0.52, with some variations over the years. This value was slightly higher than those of the other properties which ranged from 0.001 to 0.351. Multiple linear regression with soil attributes for the evaluation of NSC was better than simple regression with $NO_3-N$. The coefficient of determination ($R^2$) for the evaluation of NSC was gradually increased; 0.599 with selected chemical properties, 0.698 with quantitative attributes(chemical properties and depth of Ap horizon), and 0.839 with quantitative and selected qualitative soil attributes. Consequently, in order to evaluate NSC, analysis by multiple linear regression with soil attributes was more reliable and better model than by the simple regression model.

  • PDF

1.5T 자기공명영상기기에서 수소 자기공명분광법을 이용한 모델용액 내 포도당의 정량분석 및 임상적용 가능성에 대한 연구

  • 이경희;이정희;조순구;김용성;김형진;서창해
    • Proceedings of the KSMRM Conference
    • /
    • 2001.11a
    • /
    • pp.173-173
    • /
    • 2001
  • 목적: 1.5T 생체용 자기공명영상기기를 이용한 수소자기공명분광법으로 용액 내 물질의 정량분석에 대한 가능성을 알아보고자 하였다. 대상 및 방법: 0.01%에서 50%까지의 여러 농도를 갖는 포도당+증류수 혼합액의 모델용액을 만들어 생체용 자기공명영상기기와 시험관 nuclear magnetic resonance (NMR) 분광기에서 각각 수소 자기공명분광법을 시행하여 스펙트럼을 얻었다. 또한 12명의 당뇨환자에서 방광내의 소변에 대해 생체용 자기공명영상기기에서 스펙트럼을 얻고 소변을 추출하여 시험관 NMR 분광기에서 수소자기공명분광법을 시행하였다 각각의 방법으로 얻은 스펙트럼 상에서 포도당 농도에 따른 포도당/물 피크의 면적 비의 변화를 구하였고, 통계처리는 상관분석과 단순선형회귀분석을 시행하였고 회귀식을 산출하였다. 또한 생체용 자기공명영상기기를 이용하여 얻은 결과가 객관적인지 알아보기 위해 시험관 NMR 분광기에서 얻은 결과와의 상관관계를 분석하였다.

  • PDF

Estimation of River Flow Data Using Machine Learning (머신러닝 기법을 이용한 유량 자료 생산 방법)

  • Kang, Noel;Lee, Ji Hun;Lee, Jung Hoon;Lee, Chungdae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.261-261
    • /
    • 2020
  • 물관리의 기본이 되는 연속적인 유량 자료 확보를 위해서는 정확도 높은 수위-유량 관계 곡선식 개발이 필수적이다. 수위-유량 관계곡선식은 모든 수문시설 설계의 기초가 되며 홍수, 가뭄 등 물재해 대응을 위해서도 중요한 의미를 가지고 있다. 그러나 일반적으로 유량 측정은 많은 비용과 시간이 들고, 식생성장, 단면변화 등의 통제특성(control)이 변함에 따라 구간분리, 기간분리와 같은 비선형적인 양상이 나타나 자료 해석에 어려움이 존재한다. 특히, 국내 하천의 경우 자연적 및 인위적인 환경 변화가 다양하여 지점 및 기간에 따라 세밀한 분석이 요구된다. 머신러닝(Machine Learning)이란 데이터를 통해 컴퓨터가 스스로 학습하여 모델을 구축하고 성능을 향상시키는 일련의 과정을 뜻한다. 기존의 수위-유량 관계곡선식은 개발자의 판단에 의해 데이터의 종류와 기간 등을 설정하여 회귀식의 파라미터를 산출한다면, 머신러닝은 유효한 전체 데이터를 이용해 스스로 학습하여 자료 간 상관성을 찾아내 모델을 구축하고 성능을 지속적으로 향상 시킬 수 있다. 머신러닝은 충분한 수문자료가 확보되었다는 전제 하에 복잡하고 가변적인 수자원 환경을 반영하여 유량 추정의 정확도를 지속적으로 향상시킬 수 있다는 이점을 가지고 있다. 본 연구는 머신러닝의 대표적인 알고리즘들을 활용하여 유량을 추정하는 모델을 구축하고 성능을 비교·분석하였다. 대상지역은 안정적인 수량을 확보하고 있는 한강수계의 거운교 지점이며, 사용자료는 2010~2018년의 시간, 수위, 유량, 수면폭 등 이다. 프로그램은 파이썬을 기반으로 한 머신러닝 라이브러리인 사이킷런(sklearn)을 사용하였고 알고리즘은 랜덤포레스트 회귀, 의사결정트리, KNN(K-Nearest Neighbor), rgboost을 적용하였다. 학습(train) 데이터는 입력자료 종류별로 조합하여 6개의 세트로 구분하여 모델을 구축하였고, 이를 적용해 검증(test) 데이터를 RMSE(Roog Mean Square Error)로 평가하였다. 그 결과 모델 및 입력 자료의 조합에 따라 3.67~171.46로 다소 넓은 범위의 값이 도출되었다. 그 중 가장 우수한 유형은 수위, 연도, 수면폭 3개의 입력자료를 조합하여 랜덤포레스트 회귀 모델에 적용한 경우이다. 비교를 위해 동일한 검증 데이터를 한국수문조사연보(2018년) 내거운교 지점의 수위별 수위-유량 곡선식을 이용해 유량을 추정한 결과 RMSE가 3.76이 산출되어, 머신러닝이 세분화된 수위-유량 곡선식과 비슷한 수준까지 성능을 내는 것으로 확인되었다. 본 연구는 양질의 유량자료 생산을 위해 기 구축된 수문자료를 기반으로 머신러닝 기법의 적용 가능성을 검토한 기초 연구로써, 국내 효율적인 수문자료 측정 및 수위-유량 곡선 산출에 도움이 될 수 있을 것으로 판단된다. 향후 수자원 환경 및 통제특성에 영향을 미치는 다양한 영향변수를 파악하기 위해 기상자료, 취수량 등의 입력 자료를 적용할 필요가 있으며, 머신러닝 내 비지도학습인 딥러닝과 같은 보다 정교한 모델에 대한 추가적인 연구도 수행되어야 할 것이다.

  • PDF

A study on the forecast of container traffic using hybrid ARIMA-neural network model (하이브리드 ARIMA-신경망 모델을 통한 항만물동량 예측에 관한 연구)

  • Shin, Chang-Hoon;Kang, Jeong-Sick;Park, Soo-Nam;Lee, Ji-Hoon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.259-260
    • /
    • 2007
  • The forecast of a container traffic has been very important for port plan and development Generally, statistic methods, such as regression analysis, ARIMA, have been much used for traffic forecasting. Recent research activities in forecasting with artificial neural networks(ANNs) suggest tint ANNs am be a promising alternative to the traditional linear methods. In this paper, a hybrid methodology that combines both ARIMA and ANN models is proposed to take advantage of the unique strength of ARIMA and ANN models in linear and nonlinear modeling. The results with port traffic data indicate tint effectiveness can differ according to the ch1racteristics of ports.

  • PDF

A Study on the Predictions of Wave Breaker Index in a Gravel Beach Using Linear Machine Learning Model (선형기계학습모델을 이용한 자갈해빈상에서의 쇄파지표 예측)

  • Eul-Hyuk Ahn;Young-Chan Lee;Do-Sam Kim;Kwang-Ho Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.2
    • /
    • pp.37-49
    • /
    • 2024
  • To date, numerous empirical formulas have been proposed through hydraulic model experiments to predict the wave breaker index, including wave height and depth of wave breaking, due to the inherent complexity of generation mechanisms. Unfortunately, research on the characteristics of wave breaking and the prediction of the wave breaker index for gravel beaches has been limited. This study aims to forecast the wave breaker index for gravel beaches using representative linear-based machine learning techniques known for their high predictive performance in regression or classification problems across various research fields. Initially, the applicability of existing empirical formulas for wave breaker indices to gravel seabeds was assessed. Various linear-based machine learning algorithms were then employed to build prediction models, aiming to overcome the limitations of existing empirical formulas in predicting wave breaker indices for gravel seabeds. Among the developed machine learning models, a new calculation formula for easily computable wave breaker indices based on the model was proposed, demonstrating high predictive performance for wave height and depth of wave breaking on gravel beaches. The study validated the predictive capabilities of the proposed wave breaker indices through hydraulic model experiments and compared them with existing empirical formulas. Despite its simplicity as a polynomial, the newly proposed empirical formula for wave breaking indices in this study exhibited exceptional predictive performance for gravel beaches.