• Title/Summary/Keyword: 선형 판별분석

Search Result 194, Processing Time 0.025 seconds

Discrimination of the geographical origin of commercial sesame oils using fatty acids composition combined with linear discriminant analysis (지방산 조성과 선형판별분석을 활용한 유통판매 참기름의 원산지 판별)

  • Kim, Nam-Hoon;Choi, Chae-man;Lee, Young-Ju;Kim, Na-Young;Hong, Mi-Sun;Yu, In-Sil
    • Analytical Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.134-141
    • /
    • 2021
  • In this study, the fatty acid (FA) composition of commercial sesame oils (n = 62) was investigated using gas chromatography with flame ionization detector (GC-FID). Multivariate statistical techniques, including principal component analysis (PCA) and linear discriminant analysis (LDA), were applied to the chromatographic data of the FAs to discriminate the geographical origin of sesame oils. A statistically significant difference was observed in the content of C16:0, C18:0, C18:1, and C18:2 between domestic and imported sesame oils. A satisfactory recovery rate of 82.8-100.2 % was achieved for C16:0, C18:0, C18:1, C18:2, and C18:3. The correlation of C16:0, C18:1, and C18:2 in domestic sesame oils showed opposite trends compared to imported oils. The PCA plot demonstrated that sesame oils were clustered in distinct groups according to their origin. LDA was used to predict sesame oil samples in one of the two groups. C16:0 (Wilks λ = 0.361) and C18:1 (Wilks λ = 0.637) demonstrated the highest discriminant power for classifying the origin of the samples. The correct prediction rates were 88.9 % and 100 % for the domestic and imported samples, respectively. Further, 60 of the 62 sesame oil samples (96.8 %) were correctly classified, indicating that this approach can be used as a valuable tool to predict and classify the geographical origin of sesame oils.

Improve the Performance of People Detection using Fisher Linear Discriminant Analysis in Surveillance (서베일런스에서 피셔의 선형 판별 분석을 이용한 사람 검출의 성능 향상)

  • Kang, Sung-Kwan;Lee, Jung-Hyun
    • Journal of Digital Convergence
    • /
    • v.11 no.12
    • /
    • pp.295-302
    • /
    • 2013
  • Many reported methods assume that the people in an image or an image sequence have been identified and localization. People detection is one of very important variable to affect for the system's performance as the basis technology about the detection of other objects and interacting with people and computers, motion recognition. In this paper, we present an efficient linear discriminant for multi-view people detection. Our approaches are based on linear discriminant. We define training data with fisher Linear discriminant to efficient learning method. People detection is considerably difficult because it will be influenced by poses of people and changes in illumination. This idea can solve the multi-view scale and people detection problem quickly and efficiently, which fits for detecting people automatically. In this paper, we extract people using fisher linear discriminant that is hierarchical models invariant pose and background. We estimation the pose in detected people. The purpose of this paper is to classify people and non-people using fisher linear discriminant.

Discrimination between spontaneous and posed smile: Humans versus computers (자발적 웃음과 인위적 웃음 간의 구분: 사람 대 컴퓨터)

  • Eom, Jin-Sup;Oh, Hyeong-Seock;Park, Mi-Sook;Sohn, Jin-Hun
    • Science of Emotion and Sensibility
    • /
    • v.16 no.1
    • /
    • pp.95-106
    • /
    • 2013
  • The study compares accuracies between humans and computer algorithms in the discrimination of spontaneous smiles from posed smiles. For this purpose, subjects performed two tasks, one was judgment with single pictures and the other was judgment with pair comparison. At the task of judgment with single pictures, in which pictures of smiling facial expression were presented one by one, subjects were required to judge whether smiles in the pictures were spontaneous or posed. In the task for judgment with pair comparison, in which two kinds of smiles from one person were presented simultaneously, subjects were to select spontaneous smile. To calculate the discrimination algorithm accuracy, 8 kinds of facial features were used. To calculate the discriminant function, stepwise linear discriminant analysis (SLDA) was performed by using approximately 50 % of pictures, and the rest of pictures were classified by using the calculated discriminant function. In the task of single pictures, the accuracy rate of SLDA was higher than that of humans. In the analysis of accuracy on pair comparison, the accuracy rate of SLDA was also higher than that of humans. Among the 20 subjects, none of them showed the above accuracy rate of SLDA. The facial feature contributed to SLDA effectively was angle of inner eye corner, which was the degree of the openness of the eyes. According to Ekman's FACS system, this feature corresponds to AU 6. The reason why the humans had low accuracy while classifying two kinds of smiles, it appears that they didn't use the information coming from the eyes enough.

  • PDF

Incremental Linear Discriminant Analysis for Streaming Data Using the Minimum Squared Error Solution (스트리밍 데이터에 대한 최소제곱오차해를 통한 점층적 선형 판별 분석 기법)

  • Lee, Gyeong-Hoon;Park, Cheong Hee
    • Journal of KIISE
    • /
    • v.45 no.1
    • /
    • pp.69-75
    • /
    • 2018
  • In the streaming data where data samples arrive sequentially in time, it is difficult to apply the dimension reduction method based on batch learning. Therefore an incremental dimension reduction method for the application to streaming data has been studied. In this paper, we propose an incremental linear discriminant analysis method using the least squared error solution. Instead of computing scatter matrices directly, the proposed method incrementally updates the projective direction for dimension reduction by using the information of a new incoming sample. The experimental results demonstrate that the proposed method is more efficient compared with previously proposed incremental dimension reduction methods.

Development of an EEG Based Discriminant-Scale for Scientifically Gifted Students in Elementary School (초등학교 과학 영재아의 뇌파 기반 변별 척도 개발)

  • Kwon, Suk-Won;Kang, Min-Jung;Shin, Dong-Hoon;Kwon, Yong-Ju
    • Journal of Korean Elementary Science Education
    • /
    • v.25 no.spc5
    • /
    • pp.556-566
    • /
    • 2007
  • The purpose of this study was to develop an electroencephalogram (EEG) based differential-scale for scientifically gifted students in elementary school. For this study, signals of EEG with 19 channels were recorded during the generation of our scientific hypothesis using 22 scientifically gifted students, and with 49 average students being used as the control group. IQ, TCT and knowledge generation (KG) as constructs of the scientifically gifted were administered for both the scientifically gifted and the normal, control group elementary students. A 'gifted' value was added to paper test scores of the IQ, TCT, and KG constructs in order to make a personal standardization score for the gifted students. As a dependent variable, the groups were divided by means of the standardization scores thus produced and as an autonomous variable, various EEG parameters were presented through linear analysis, nonlinear analysis, and interdependency measures of the EEG. Multiple linear regression analysis was applied successfully to explain the EEG parameters and to show the characteristics of the scientifically-gifted. The discrimination analysis was administered through the results of multiple linear regression of the EEG parameters thus produced. This study represents the foundation of the development of an EEG based discriminant-scale for scientifically gifted students in elementary school, because it will be able to faithfully discriminate between scientifically-gifted and average students. The results of this study indicates that most of the EEG parameters produced can contribute to predicting the characteristics of the scientifically-gifted in that they express the degree of mutual information and the coherence of mutuality. Accordingly, mutual connectivity which appears to originate in the brain seems to the core of discrimination.

  • PDF

통계적 분류방법을 이용한 문화재 정보 분석

  • Kang, Min-Gu;Sung, Su-Jin;Lee, Jin-Young;Na, Jong-Hwa
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2009.05a
    • /
    • pp.120-125
    • /
    • 2009
  • 본 논문에서는 통계적 분류방법을 이용하여 문화재 자료의 분석을 수행하였다. 분류방법으로는 선형판별분석, 로지스틱회귀분석, 의사결정나무분석, 신경망분석, SVM분석을 사용하였다. 각각의 분류방법에 대한 개념 및 이론에 대해 간략히 소개하고, 실제자료 분석에서는 "지역별 문화재 통계분석 및 모형개발 연구 1차(2008)"에 사용된 자료 중 익산시 자료를 근거로 매장문화재에 대한 분류방법별 적합모형을 구축하였다. 구축된 모형과 모의실험의 결과를 통해 각각의 적합모형에 대한 비교를 수행하여 모형의 성능을 비교하였다. 분석에 사용된 도구로는 최근 가장 관심을 갖는 R-project를 사용하였다.

  • PDF

Comparison of Discriminant Analyses for Consumers' Taste Grade on Hanwoo (한우 맛 등급 판별방법 비교 연구)

  • Kim, Jae-Hee;Seo, Gu-Re-Oun-Den-Nim
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.6
    • /
    • pp.969-980
    • /
    • 2008
  • This paper presents the comparison of four methods, linear, quadratic, canonical and non-parametric discriminant analyses to discriminate the consumers' taste grade with sensory variables, such as tenderness, juiciness, flavor, and overall acceptability based on Consumer Sensory Survey. The classification ability of each method is measured and compared by the resubstitution error rate.

A Study on the Optimal Discriminant Model Predicting the likelihood of Insolvency for Technology Financing (기술금융을 위한 부실 가능성 예측 최적 판별모형에 대한 연구)

  • Sung, Oong-Hyun
    • Journal of Korea Technology Innovation Society
    • /
    • v.10 no.2
    • /
    • pp.183-205
    • /
    • 2007
  • An investigation was undertaken of the optimal discriminant model for predicting the likelihood of insolvency in advance for medium-sized firms based on the technology evaluation. The explanatory variables included in the discriminant model were selected by both factor analysis and discriminant analysis using stepwise selection method. Five explanatory variables were selected in factor analysis in terms of explanatory ratio and communality. Six explanatory variables were selected in stepwise discriminant analysis. The effectiveness of linear discriminant model and logistic discriminant model were assessed by the criteria of the critical probability and correct classification rate. Result showed that both model had similar correct classification rate and the linear discriminant model was preferred to the logistic discriminant model in terms of criteria of the critical probability In case of the linear discriminant model with critical probability of 0.5, the total-group correct classification rate was 70.4% and correct classification rates of insolvent and solvent groups were 73.4% and 69.5% respectively. Correct classification rate is an estimate of the probability that the estimated discriminant function will correctly classify the present sample. However, the actual correct classification rate is an estimate of the probability that the estimated discriminant function will correctly classify a future observation. Unfortunately, the correct classification rate underestimates the actual correct classification rate because the data set used to estimate the discriminant function is also used to evaluate them. The cross-validation method were used to estimate the bias of the correct classification rate. According to the results the estimated bias were 2.9% and the predicted actual correct classification rate was 67.5%. And a threshold value is set to establish an in-doubt category. Results of linear discriminant model can be applied for the technology financing banks to evaluate the possibility of insolvency and give the ranking of the firms applied.

  • PDF

Feature extraction based on DWT and GA for Gesture Recognition of EPIC Sensor Signals (EPIC 센서 신호의 제스처 인식을 위한 이산 웨이블릿 변환과 유전자 알고리즘 기반 특징 추출)

  • Ji, Sang-Hun;Yang, Hyung-Jeong;Kim, Soo-Hyung;Kim, Young-Chul
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.612-615
    • /
    • 2016
  • 본 논문에서는 EPIC(Electric Potential Integrated Circuit) 센서를 통해 추출된 동작신호에 대해 이산 웨이블릿 변환(Discrete Wavelet Transform : DWT)과 선형 판별분석(Linear Discriminant Analysis : LDA), Support Vector Machine(SVM)을 사용하는 동작 분류 시스템을 제안한다. EPIC 센서 신호에 대해 이산 웨이블릿 변환을 사용하여 웨이블릿 계수인 근사계수(approximation coefficients)와 상세계수(detail coefficients)를 구한 후, 각각의 웨이블릿 계수에 대해 특징 파라미터를 추출한다. 이 때, 특징 파라미터는 14개의 통계적 특징 추출 파라미터 중에 유전자 알고리즘(Genetic Algorithm : GA)을 통하여 선택한 우수한 특징 파라미터이다. 웨이블릿 계수들에서 추출한 특징 파라미터는 선형 판별분석을 적용하여 차원을 축소하고 SVM의 훈련 및 분류에 사용한다. 실험결과, 4가지 동작에 대한 EPIC 센서 신호분류에서 제안된 방법의 분류율이 99.75%로 원신호에 대한 HMM 분류율 97% 보다 높은 정확률을 보여주었다.