• Title/Summary/Keyword: 선형 압축거동

Search Result 275, Processing Time 0.03 seconds

A Study on the Theory and Its Verification of Dynamic Analysis Program (MPDAP) for Modelling of Saturated Multi Phase Porous Media (포화된 다공성 지반의 모델링을 위한 동적해석 프로그램(MPDAP)의 이론 및 이의 검증에 괄한 연구)

  • 김광진;문홍득
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.5-18
    • /
    • 1997
  • In order to make reliable ground shock predictions in saturated geological media, it is necessary to use multi -phase material models and numerical codes. This paper presents the results of theoretical study of the fundamental behavior of multi-phase porous media subjected to high dynanlic loadings, and deals with the development of numerical code MPDAP with JWL(Jones-Wilkins-Lee) model, which is capable of considering the kinds and characters of explosives. To check the global equilhorium equations of the numerical code, we carried out some verifications. In the cases of the elastic spherical wave propagation in a single phase medium, one-dimensional linear ronsolidation, and one timensional wave propagation in saturated linear elastic soils and rocks, the results calculated by MPDAP show close agreement with closed-form solutions or numerical solutions generated with two phase code.

  • PDF

A Study on the Estimation of the Behaviors by Compression Method of Rock Pillar between Close Parallel Tunnels (근접 병설터널에서 필라 압축방법에 따른 필라부 강도특성 변화에 관한 연구)

  • Kim, Jae-Kyoung;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.12
    • /
    • pp.87-94
    • /
    • 2013
  • In recent years, tunnel construction is being increased in order to resolve traffic congestion around urban area, however there are a lot of difficulties due to restrictions such as interference with existing alignment, adjacent structures and cost increase of land acquisition as well as public complaints for negative environmental impacts near the expected tunnel construction site. Therefore, applications of close parallel tunnel have been increasing greatly. But close parallel tunnels cannot guarantee the stability compared with normal parallel tunnel which has enough distance between tunnels. So various methods to strengthen the pillar have been introduced recently, however there is few methods which consider the pillar behaviour in the state of compression. In this paper, the reinforcement methods which reflect the behavior of pillar were reviewed with comparision and analysis by numerical method.

Analytical Study on Concrete Cover Thickness of Anisotropic FRP Bar (이방성 섬유강화폴리머 보강근의 콘크리트 피복두께에 대한 해석적 연구)

  • Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.58-66
    • /
    • 2022
  • In this study, to examine the effect of the transverse thermal expansion behavior of FRP reinforcing bars and concrete on the concrete cover thickness, based on 20℃, when the temperature changes from -70℃ to 80℃, the behavior of concrete was studied theoretically and numerically. Theoretical elastic analysis and nonlinear finite element analysis were performed on FRP reinforced concrete with different diameters and cover thicknesses of FRP reinforcement. As a result, at a negative temperature difference, concrete was compressed, and the theoretical strain result and the finite element result were similar, but at a positive temperature difference, tensile stress and further cracks occurred in the concrete, which was 1.2 to 1.4 times larger than the theoretical result. The ratio of the diameter of the FRP reinforcing bar to the thickness of the concrete cover (c/db) is closely related to the occurrence of cracks. Since the transverse thermal expansion coefficient of FRP reinforcing bars is three times greater than that of concrete, it is necessary to consider this in design.

Geotechnical Characteristics of DCM-Improved Specimen Under Artesian Pressure (피압 작용에 따른 DCM 개량체의 지반공학적 특성)

  • Yun, Dae-Ho;Kim, Yun-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.187-195
    • /
    • 2022
  • This study investigated the effect of artesian pressure on mechanical properties of deep cement mixing (DCM)-improved specimens. Various laboratory tests such as unconfined compression test and scanning electron microscope (SEM) were conducted on DCM specimens which curied in a water tank with different artesian pressures. The artesian pressure was determined in consideration of the laboratory scale and the hydraulic gradient in field conditions. Results of experimental tests indicated that unconfined compressive strength, secant modulus, and unit weight of specimen decreased and water content tended to increase as an artesian pressure increased. The stress-strain behavior changed brittle to ductile behaviors as an artesian pressure increased. The outflow water from the water tank reacted with the phenolphthalein solution due to the leaching phenomenon of the improved specimen. SEM analysis also confirmed that a small amount of ettringite was formed between soil particles in the specimens with artesian pressure.

Finite Element Post-buckling Analysis of Steel-Concrete Composite Column (철골-콘크리트 합성기둥의 후좌굴 거동에 관한 해석 연구)

  • Oh, Myoung Ho;Kim, Myeong Han;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.725-735
    • /
    • 2007
  • The local buckling strength and post-local buckling strength of thin steel plates in the steel-concrete composite column were evaluated by nonlinear finite element analyses. The proposed width-to-thickness limit ratio was based on elastic buckling analyses, in which the increased local buckling capacity of the plate due to the in-filled concrete was considered by the boundary conditions of the thin plate. Considering the initial imperfections and residual stresses, we determined the initial local buckling strength and post-local buckling strength of the thin plates with various width-to-thickness ratios. The formula to evaluate the compressive capacity of the steel-concrete composite column based on the effective width of the plate was proposed. For verification, values determined by the formula were compared with the experimental results.

Analytical Study on Joints in Precast Segmental Prestressed Concrete Bridge Piers (조립식 프리스트레스트 콘크리트 교각의 접합부에 관한 해석적 연구)

  • Kim, Tae-Hoon;Jin, Byeong-Moo;Kim, Young-Jin;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.1 s.53
    • /
    • pp.79-87
    • /
    • 2007
  • This paper presents an analysis procedures of Joints in precast segmental prestressed concrete bridge piers. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. An unbended tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is newly developed to predict the inelastic behaviors of segmental joints. The proposed numerical method for joints in precast segmental prestressed concrete bridge piers is verified by comparison with reliable experimental results.

Material Nonlinear Analysis of the RC Shells Considering Tension Stiffening Effects (인장강성 효과를 고려한 RC 쉘의 재료비선형 해석)

  • Jin, Chi Sub;Eom, Jang Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.99-107
    • /
    • 1993
  • In this study, material nonlinear finite element program is developed to analyze reinforced concrete shell of arbitrary geometry considering tension stiffening effects. This study is capable of tracing the load-deformation response and crack propagation, as well as determining the internal concrete and steel stresses through the elastic, inelastic and ultimate ranges in one continuous computer analysis. The cracked shear retention factor is introduced to estimate the effective shear modulus including aggregate interlock and dowel action. The concrete is assumed to be brittle in tension and elasto-plastic in compression. The Drucker-Prager yield criterion and the associated flow rule are adopted to govern the plastic behavior of the concrete. The reinforcing bars are considered as a steel layer of equivalent thickness. A layered isoparametric flat finite element considering the coupling effect between the in-plane and the bending action was developed. Mindlin plate theory taking account of transverse shear deformation was used. An incremental tangential stiffness method is used to obtain a numerical solution. Numerical examples about reinforced concrete shell are presented. Validity of this method is studied by comparing with the experimential results of Hedgren and the numerical analysis of Lin.

  • PDF

In-plane Bending Moment Capacity of T-Joints in the Circular Hollow Section of New High Strength Steel Subjected to Cyclic Loadings (반복하중을 받는 고강도 원형강관의 T형 접합의 면내 휨모멘트 내력)

  • Lee, Sung-Ju;Kim, Joo-Woo;Kim, Sang-Seup;Lee, Myung-Jae;Yang, Jae-Geun
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.169-177
    • /
    • 2011
  • This paper presents the results of the systematic finite element analysis of the in-plane bending moment of T-joints subjected to cyclic loadings. T-joints were fabricated using high-strength, circular, hollow sections. Three-dimensional, nonlinear finite element models of the welded T-joints were constructed to investigate the strength, rotational-stiffness characteristics, and failure modes. A wide scope of structural behaviors explain the influence of the joint geometric parameters, such as the chord and brace wall slenderness ratios and the ratio of the brace to the chord diameter, as well as the yield strength ratios and compressive-chord-stress effects on the ultimate in-plane bending moment capacity of the T-joint.

On the Bishop Stress of Unsaturated Soils under the Low Level of Matric Suction (낮은 모관흡수력 수준에서 불포화토의 Bishop 응력에 관한 연구)

  • Oh, Se-Boong;Kim, Tae-Kyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.7
    • /
    • pp.17-24
    • /
    • 2008
  • In this study, the triaxial behaviour of an unsaturated soil was analyzed by Bishop stress descriptions. $K_0$ stress paths and those final values were independent of matric suctions after describing by the Bishop stress. The failure criteria could be defined uniquely by the Bishop stress and were also independent of matric suctions. In the low level of matric suctions the failure criteria have a linear relationship and the estimated criterion fits the measured accurately. The variable ${\chi}$ for describing the Bishop stress was a constant theoretically under the low level of matric suctions. The suction stress could be defined at zero deviatoric stress in the failure criteria and increased linearly with respect to matric suctions in both the theory and the experiments.

Reliability of Load-Carrying Capacity of RC Deep Beams (철근콘크리트 깊은 보의 내하력에 대한신뢰도 평가)

  • Cheon Ju-Hyun;Kim Tae-Hoon;Lee Sang-Cheol;Shin Hyun-Mock
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.955-962
    • /
    • 2005
  • Still no accurate theory exists for predicting ultimate shear strength of deep reinforced concrete beams because of the structural and material non-linearity after cracking. Currently, the load capacity assesment is performed for the upper structure of the bridges and containing non-reliability in the applications and results. The purpose in this study is to evaluate analytically the complex shear behaviors and normal strength for the reinforced concrete deep beams and to offer the accuracy load capacity assesment method based on the reliability theories. This paper presents a method for the load capacity assesment of reinforcement concrete deep beams using nonlinear finite element analysis. A computer program named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material non-linearity is taken Into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. From the results, determine the reliability index for the failure base on the Euro Code. Then, calculate additional reduction coefficient to satisfy the goals from the reliability analysis. The proposed numerical method for the load capacity assesment of reinforced concrete deep beams is verified by comparison with the others methods.