• Title/Summary/Keyword: 선형 빔

Search Result 337, Processing Time 0.03 seconds

An Optical True Time-Delay for Two-Dimensional X-Band Phased Array Antennas (2차원 X-밴드 위상 배열 안테나용 광 실시간 지연선로)

  • Jung, Byung-Min;Kim, Sung-Chul;Shin, Jong-Dug;Kim, Boo-Gyoun
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.287-294
    • /
    • 2005
  • In this paper, an optical true time-delay (TTD) for two-dimensional (2-D) phased array antennas (PAAs), composed of a multi-wavelength optical source and a fiber optic delay line matrix consisting of $2\times2$ optical switches with optical fiber connected between cross ports, has been proposed. A 2-bit $\times4-bit$ optical TTD for 10-GHz 2-D PAAs has been implemented by cascading a wavelength dependent TTD (WD-TTD) and a wavelength independent TTD (WI-TTD). The unit time delay for WD-TTD and WI-TTD have been chosen as ${\Delta}T=12ps$ and $\Delta\tau=6ps$, respectively. Time delay have been measured at all radiation angles. The maximum delay error for WD-TTD was measured to be 3 ps due to jitter incurred from gain switching. For the case of WI-TTD, error was within ${\pm}\;1\;ps$. The proposed optical TTD for a 2-D PAA has the following advantages: 1) higher gain compared to one-dimensional linear PAAs, 2) stabilization of optical power and wavelength by using a multi-wavelength optical source, and 3) fast beam scan and simple operation due to electronic control of the $2\times2$ optical switches matrix on a column-by-column basis.

A Parametric Study of Pulsed Gamma-ray Detectors Based on Si Epi-Wafer (실리콘 에피-웨이퍼 기반의 펄스감마선 검출센서 최적화 연구)

  • Lee, Nam-Ho;Hwang, Young-Gwan;Jeong, Sang-Hun;Kim, Jong-Yeol;Cho, Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1777-1783
    • /
    • 2014
  • In this paper, we designed and fabricated a high-speed semiconductor sensor for use in power control devices and analyzed the characteristics with pulsed radiation tests. At first, radiation sensitive circular Si PIN diodes with various diameters(0.1 mm ~5.0 mm) were designed and fabricated using Si epitaxial wafer, which has a $42{\mu}m$ thick intrinsic layer. The reverse leakage current of the diode with a radius of 2 mm at a reverse bias of 30 V was about 20.4 nA. To investigate the characteristic responses of the developed diodes, the pulsed gamma-radiation tests were performed with the intensity of 4.88E8 rad(Si)/sec. From the test results showing that the output currents and the rising speeds have a linear relationship with the area of the sensors, we decided that the optimal condition took place at a 2 mm diameter. Next, for the selected 2 mm diodes, dose rate tests with a range of 2.47E8 rad(Si)/sec to 6.21E8 rad(Si)/sec were performed. From the results, which showed linear characteristics with the radiation intensity, a large amount of photocurrent over 60mA, and a high speed response under 350ns without saturation, we can conclude that the our developed PIN diode can be a good candidate for the sensor of power control devices.

A STUDY OF ION BEAM ASSISTED DEPOSITION(IBAD) OF TiN ON Ni-Cr Be ALLOY FOR SURFACE CHARACTERISTIC (이온빔 보조 증착법에 의한 TiN 박막도포가 니켈-크롬-베릴륨 합금의 표면 성상에 미치는 영향에 관한 연구)

  • Choi, Soo-Young;Lee, Sun-Hyung;Chang, Ik-Tae;Yang, Jae-Ho;Chung, Hun-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.2
    • /
    • pp.212-234
    • /
    • 1999
  • Dental restorative materials must have the physical properties to withstand wear and corrosion. Base metal alloys possess better mechanical properties and lower price than the gold alloys. For these reasons such alloys have largely replaced the precious metal alloys. One aspect to con-sider is the release of metal substances to oral environment. The release of elements from dental alloys is a continuing concern because the elements may have the potentially harmful biological effects on local tissues. The purpose of this study was to minimize metal release on the nonprecious metal surfaces by ion beam assisted deposition(IBAD) of titanium nitride (TiN) Ni-Cr-Be alloys with and without TiN coatings were secured in an wear test machine opposing ruby ball to determine their relative resistance to wear with loom, 200m, 300m and 400m sliding distance. And the corrosion behavior of the Ni-Cr-Be alloys with and without TiN coatings and 3 dental noble alloys have been studied. Potentiodynamic curves were used to analyse the corrosion characteristics of the alloys. The measurement of the released Ni and Cr ions was conducted by analysis of the electrolyte solution with atomic absorption spectroscopy. The results were as follows : 1. The critical sliding distance that wore down TiN coatings of $2.5{\mu}m$ thickness in this study condition was 300m. 2. Ion beam assisted deposition of TiN showed a good surface modification with respect to the properties of wear and corrosion resistance. 3. X-ray diffraction showed that the strongest peak of TiN is TiN(111) in the coatings. 4. The release of Ni and Cr ions from alloys measured by means of atomic absorption spectroscopy was reduced by ion beam assisted deposition of TiN.

  • PDF

New Analysis Approach to the Characteristics of Excimer Laser Annealed Polycrystalline Si Thin Film by use of the Angle wrapping (엑시며 레이저에 의해 형성된 다결정 실리콘 박막의 Angle wrapping에 의한 깊이에 따른 특성변화)

  • Lee, Chang-U;Go, Seok-Jung
    • Korean Journal of Materials Research
    • /
    • v.8 no.10
    • /
    • pp.884-889
    • /
    • 1998
  • Amorphous silicon films of large area have been crystallized by a line shape excimer laser beam of one dimensional scanning with a gaussian profile in the scanning direction. In order to characterize the crystalline phase transition of thickness variables in excimer laser annealing(ELA), angle wrapping method was used. And also to characterize the residual stresses of crystalline phase transition in the case of angle wrapped-crystalline silicon on corning 7059 glass, polarized raman spectroscopies were measured at various laser energy density and substrate temperature. The residual stress varies from $9.0{\times}10^9$ to $9.9{\times}10^9$, and from $9.9{\times}10^9$ to $1.2{\times}10^10$dyne/${cm}^2$ of the substrate temperature at room temperature and varies from $8.1{\times}10^9$ to $9.0{\times}10^9$, and from $9.0{\times}10^9$ to $9.9{\times}10^9$dyne/${cm}^2$ of the substrate temperature at $400^{\circ}C$ as a function of direction from surface to substrate. According to the direction from the surface in liquid phase to the interface and from the interface to near the substrate in solid phase of recrystallized Si thin film, respectively. Thus, the stress is increased from(Liquid phase to solid phase) with phase transition.

  • PDF

Evaluation of Deformation Characteristics and Vulnerable Parts according to Loading on Compound Behavior Connector (복합거동연결체의 하중재하에 따른 변형 특성 및 취약부위 산정)

  • Kim, Ki-Sung;Kim, Dong-wook;Ahn, Jun-hyuk
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.524-530
    • /
    • 2019
  • Purpose: In this paper, we construct a detailed three-dimensional interface element using a three-dimensional analysis program, and evaluate the composite behavior stability of the connector by applying physical properties such as the characteristics of general members and those of reinforced members Method: The analytical model uses solid elements, including non-linear material behavior, to complete the modeling of beam structures, circular flanges, bolting systems, etc. to the same dimensions as the design drawing, with each member assembled into one composite behavior linkage. In order to more effectively control the uniformity and mesh generation of other element type contact surfaces, the partitioning was performed. Modeled with 50 carbon steel materials. Results: It shows the displacement, deformation, and stress state of each load stage by the contact adjoining part, load loading part, fixed end part, and vulnerable anticipated part by member, and after displacement, deformation, The effect of the stress distribution was verified and the validity of the design was verified. Conclusion: Therefore, if the design support of the micro pile is determined based on this result, it is possible to identify the Vulnerable Parts of the composite behavior connector and the degree of reinforcement.

Modelling and Analysis of Roll-Type Steel Mats for Rapid Stabilization of Permafrost (I) - Modeling - (영구동토 급속안정화를 위한 롤타입강재매트의 모델링과 해석(I) - 해석모델의 수립 -)

  • Moon, Do Young;Kang, Jae Mo;Lee, Janggeun;Lee, Sang Yoon;Zi, Goangseuo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.97-107
    • /
    • 2014
  • Finite element modelling and analysis were conducted for the roll-type steel mats which were placed on loose sand and subjected to a standard truck wheel load in this study. The roll-type steel mats mean that the steel mats can be folded as a circle shape for the carrying to fields in cold regions where workability is limited and are developed for a rapid rehabilitation method for roadway across soft ground which is caused by thawing during the summer season in cold regions. The model is composed of link elements to simulate nonlinear behavior of connections between steel mats, thick shell elements to have flexural stiffness of the steel mats, and springs to simulate characteristics of foundation soils. The structural behaviors of the shell, link elements, and springs were verified at each modelling step through experiment and analysis. Beam and shell analysis without the link elements were conducted and compared to results obtained from the model presented in this study. Significant vertical displacement is shown in the shell model with hinge connections. Therefore, the results demonstrate that the analysis model for the roll-type steel mats on loose sand needs further detail parametric studies.

Comparison of Linac-based VMAT Stereotatic Radiosurgery and Conventional Stereotatic Radiosurgery for Multiple Brain Lesions (Linac 기반 VMAT 정위적 수술 뇌 병변 연구와 기존의 정위적 방사선 수술 비교)

  • Jang, Eun-Sung;Chang, Bo-Seok
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.239-246
    • /
    • 2021
  • Portal Dosimetry was verified using EPID to secure the clinical application and reliability of the existing research dose evaluation. The dose distribution of Geant4 was compared with the measured value by 360° rotational irradiation with a 2.5 cm cone for stereotactic brain surgery. To confirm the dose distribution of patients with brain metastasis, the dose distribution investigated by inserting a Gafchromic EBT film into the parietal phantom and the dose distribution obtained from the parietal phantom using VMAT are compared and applied to actual patients. As a result of the analysis, it was confirmed that the accuracy of the beam center and the center of the couch coincide accurately with an error within 1mm as a result of QA through a pin ball. In addition, it was confirmed that the EBT3 film has excellent linearity in the range of 0 to 10 Gy according to various dose irradiation. In the same setting as the two cervical phantoms, we confirm that the implementation and simulation results calculations of dose calculations based on Geant4 using photon beams match the experimental data within the treatment planning volume (PTV). Therefore, volume modulated arc treatment (VMAT) 360° rotational irradiation was performed, and the result of iso-dose distribution analysis by rotational irradiation confirmed that it is appropriate to include a virtual tumor.

Molecular Dynamics Simulation on the Thermal Boundary Resistance of a Thin-film and Experimental Validation (분자동역학을 이용한 박막의 열경계저항 예측 및 실험적 검증)

  • Suk, Myung Eun;Kim, Yun Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.2
    • /
    • pp.103-108
    • /
    • 2019
  • Non-equilibrium molecular dynamics simulation on the thermal boundary resistance(TBR) of an aluminum(Al)/silicon(Si) interface was performed in the present study. The constant heat flux across the Si/Al interface was simulated by adding the kinetic energy in hot Si region and removing the same amount of the energy from the cold Al region. The TBR estimated from the sharp temperature drop at the interface was independent of heat flux and equal to $5.13{\pm}0.17K{\cdot}m^2/GW$ at 300K. The simulation result was experimentally confirmed by the time-domain thermoreflectance technique. A 90nm thick Al film was deposited on a Si(100) wafer using an e-beam evaporator and the TBR on the film/substrate interface was measured using the time-domain thermoreflectance technique based on a femtosecond laser system. A numerical solution of the transient heat conduction equation was obtained using the finite difference method to estimate the TBR value. Experimental results were compared to the prediction and discussions on the nanoscale thermal transport phenomena were made.

Geant4 Code Based Simulation of 6 MV Photon Beam for Analysis of Dose Distribution (Geant4 코드를 이용한 선형가속기 6 MV 광자선의 선량분포에 관한 연구)

  • Lee, Jun-Seong;Kim, Yang-Soo;Lee, Sun-Young
    • Journal of radiological science and technology
    • /
    • v.45 no.5
    • /
    • pp.449-455
    • /
    • 2022
  • This study is to present a Geant4 code for the simulation of the absorbed dose distribution given by a medical linac for 6 MV photon beam. The dose distribution was verified by comparison with calculated beam data and beam data measured in water phantom. They were performed for percentage depth dose(PDD) and beam profile of cross-plane for two field sizes of 10 × 10 and 15 × 15 cm2. Deviations of a percentage and distance were obtained. In energy spectrum, the mean energy was 1.69 MeV. Results were in agreement with PDD and beam profile of the phantom with a tolerance limit. The differences in the central beam axis data 𝜹1 for PDD had been less than 2% and in the build up region, these differences increased up to 4.40% for 10 cm square field. The maximum differences of 𝜹2 for beam profile were calculated with a result of 4.35% and 5.32% for 10 cm, 15 cm square fields, respectively. It can be observed that the difference was below 4% in 𝜹3 and 𝜹4. For two field sizes of 𝜹50-90 and RW50, the results agreed to within 2 mm. The results of the t-test showed that no statistically significant differences were found between the data for PDD of 𝜹1, p>0.05. A significant difference on PDD was observed for field sizes of 10 × 10 cm2, p=0.041. No significant differences were found in the beam profile of 𝜹3, 𝜹4, RW50, and 𝜹50-90. Significant differences on beam profile of 𝜹2 were observed for field sizes of 10 × 10 cm2, p=0.025 and for 15 × 15 cm2, p=0.037. This work described the development and reproducibility of Geant4 code for verification of dose distribution.

Noise Measurement by Percentage of Effective Linear Attenuation Coefficient of Water in CT Image of AAPM CT Performance Phantom (AAPM CT 성능 팬텀의 CT영상에서 물 유효선감쇠계수의 백분율에 의한 노이즈 측정)

  • Jong-Eon, Kim;Sang-Hun, Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.771-778
    • /
    • 2022
  • The purpose of this study is to present a method of measuring noise by the percentage of effective line attenuation coefficient of water that can be used for quality control of CT image noise using AAPM CT performance phantom in clinical practice. In the CT images obtained by scanning the AAPM CT performance phantom with a 120 kVp CT X-ray beam, the mean CT number was measured for each pin and water in the CT number linearity insert part. The effective energy was determined as the photon energy with the largest correlation coefficient from the correlation coefficients of the linear regression analysis of the measured mean CT number for each pin and water and the linear attenuation coefficient for each photon energy. And for water and acrylic, the contrast scale was calculated as 0.000188 cm-1 · HU-1 from the measured mean CT number and effective line attenuation coefficient. Using the calculated contrast scale, the effective line attenuation coefficient of water, and the standard deviation measured in the water of the alignment pin part of the AAPM CT performance phantom, The noise measurement value by the percentage of effective line attenuation coefficient of water obtained 0.31 ~ 0.52% in the range of 100 ~ 300 mAs.