• Title/Summary/Keyword: 선형성 검정

Search Result 229, Processing Time 0.02 seconds

Homogeneity Test of Random Coefficient for the First Order Nonlinear Time Series Panel Data (일차 비선형 시계열 패널자료의 확률계수 동질성 검정)

  • 김인규;황선영;이성덕
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.1
    • /
    • pp.97-104
    • /
    • 2000
  • 본 논문은 m개의 독립적인 일차 비선형 시계열로 구성된 패널자료의 동질성 검정에 대한 연구로서 먼저 일반적인 일차 비선형 시계열의 정상성 조건을 유도하고 이어서 동질성 검정법을 제시하고 연관된 극한분포를 규명하였다. 또한 모의실험을 하여 제안된 검정법의 모의검정력을 구하였다.

  • PDF

A Bootstrap Test for Linear Relationship by Kernel Smoothing (희귀모형의 선형성에 대한 커널붓스트랩검정)

  • Baek, Jang-Sun;Kim, Min-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.9 no.2
    • /
    • pp.95-103
    • /
    • 1998
  • Azzalini and Bowman proposed the pseudo-likelihood ratio test for checking the linear relationship using kernel regression estimator when the error of the regression model follows the normal distribution. We modify their method with the bootstrap technique to construct a new test, and examine the power of our test through simulation. Our method can be applied to the case where the distribution of the error is not normal.

  • PDF

A linearity test statistic in a simple linear regression (단순회귀모형에서 선형성 검정통계량)

  • Park, Chun Gun;Lee, Kyeong Eun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.2
    • /
    • pp.305-315
    • /
    • 2014
  • In a simple linear regression, a linear relationship between an explanatory variable and a response variable can be easily recognized in the scatter plot of them. The lack of fit test for the replicated data is commonly used for testing the linearity but it is not easy to test the linearity when the explanatory variable is not replicated. In this paper, we propose three new test statistics for testing the linearity regardless of replication using the principle of average slope and validate them through several simulations and empirical studies.

KOSPI수익률의 평활전이회귀모형 추정

  • Yu, Il-Seong
    • The Korean Journal of Financial Studies
    • /
    • v.13 no.1
    • /
    • pp.77-92
    • /
    • 2007
  • 한국증권시장을 포함한 대부분의 지역증권시장이 미국 뉴욕증권시장의 움직임에 반응하거나 동조현상을 보인다는 사실은 이미 경험적으로 혹은 통계적으로 널리 수용되고 있다. 본 연구는 그러한 반응에 비선형성이 존재하는가를 일별 주가수익률을 데이터로 활용하여 우선적으로 검정한다. 그러한 검정결과에 입각하여 비선형성을 내재화시킨 계량분석모형이 주가수익률을 설명하고 예측하는데 도움을 줄 수 있는가를 확인한다. 본 연구에서는 이러한 비선형성에 관련된 정보를 유도하기 위하여 평활전이(자기)회귀분석모형(STR)을 이용한다. STR모형은 국면전환을 야기하는 전이변수를 명시적으로 확인할 수 있고 다양한 국면전환형태를 모형에 수용할 수 있는 장점을 가지고 있다. KOSPI수익률의 비선형성에 대한 검정결과는 귀무가설인 선형성이 기각되는 것으로 나타났으며, 그러한 비선형성의 형태는 미국증권시장이 하강기에 처한 경우에 상승기에 처한 상태보다 민감한 동조현상을 보이는 것으로 나타났다. 하지만 추정된 STR모형이 주가의 변동을 설명하거나 예측하는데 여타의 모형보다 나은 능력을 가지는가에 대해서는 긍정적인 결과를 얻지 못하였다.

  • PDF

선형모형에서 오차의 대칭성에 대한 검정과 회귀계수의 추정에 관한 연구

  • 김순옥
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.1
    • /
    • pp.13-21
    • /
    • 1995
  • 선형모형에서 오차가 대칭인 분포를 따르는지 또는 한쪽으로 치우친(skewed distribution)분포를 따르는지 검정하는 문제를 다루었다. 또 이러한 검정과정을 분석의 예비단계로 하는 회귀계수의 추정방법에 대해서 연구하고, 모의실험을 통해서 회귀계수 추정법들의 효율을 비교하였다.

  • PDF

Comparing the performance of likelihood ratio test and F-test for gamma generalized linear models (감마 일반화 선형 모형에서의 가능도비 검정과 F-검정 비교연구)

  • Jo, Seongil;Han, Jeongseop;Lee, Woojoo
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.4
    • /
    • pp.475-484
    • /
    • 2018
  • Gamma generalized linear models are useful for non-negative and skewed responses. However, these models have received less attention than Poisson and binomial generalized linear models. In particular, hypothesis testing for the significance of regression coefficients has not been thoroughly studied. In this paper we assess the performance of various test statistics for gamma generalized linear models based on numerical studies. Our results show that the likelihood ratio test and F-type test are generally recommended and that the partial deviance test should be avoided in practice.

Test of Linearity in Panel Regression Model (패널회귀모형에서 선형성검정)

  • 송석헌;최충돈
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.2
    • /
    • pp.351-364
    • /
    • 2003
  • This paper derives Lagrange multiplier tests based on Double-Length Artificial Regression and Outer-Product Gradient for testing linear and log-linear panel regressions against Box-Cox alternatives. The proposed DLR based LM tests are easy to implement in an error component model. From the Monte Carlo study, the DLR based LM tests are recommended for testing functiona forms.

A Test for Nonlinear Causality and Its Application to Money, Production and Prices (통화(通貨)·생산(生産)·물가(物價)의 비선형인과관계(非線型因果關係) 검정(檢定))

  • Baek, Ehung-gi
    • KDI Journal of Economic Policy
    • /
    • v.13 no.4
    • /
    • pp.117-140
    • /
    • 1991
  • The purpose of this paper is primarily to introduce a nonparametric statistical tool developed by Baek and Brock to detect a unidirectional causal ordering between two economic variables and apply it to interesting macroeconomic relationships among money, production and prices. It can be applied to any other causal structure, for instance, defense spending and economic performance, stock market index and market interest rates etc. A key building block of the test for nonlinear Granger causality used in this paper is the correlation. The main emphasis is put on nonlinear causal structure rather than a linear one because the conventional F-test provides high power against the linear causal relationship. Based on asymptotic normality of our test statistic, the nonlinear causality test is finally derived. Size of the test is reported for some parameters. When it is applied to a money, production and prices model, some evidences of nonlinear causality are found by the corrected size of the test. For instance, nonlinear causal relationships between production and prices are demonstrated in both directions, however, these results were ignored by the conventional F-test. A similar results between money and prices are obtained at high lag variables.

  • PDF

A Study on the Test of Homogeneity for Nonlinear Time Series Panel Data Using Bilinear Models (중선형 모형을 이용한 비선형 시계열 패널자료의 동질성검정에 대한 연구)

  • Kim, Inkyu
    • Journal of Digital Convergence
    • /
    • v.12 no.7
    • /
    • pp.261-266
    • /
    • 2014
  • When the number of parameters in the time series model are diverse, it is hard to forecast because of the increasing error by a parameter estimation. If the homogeneity hypothesis which was obtained from the same model about severeal data for the time series is selected, it is easy to get the predictive value better. Nonlinear time-series panel data for each parameter for each time series, since there are so many parameters that are present, and the large number of parameters according to the parameter estimation error increases the accuracy of the forecast deteriorated. Panel present in the time series of multiple independent homogeneity is satisfied by a comprehensive time series to estimate and to test of the parameters. For studying about the homogeneity test for the m independent non-linear of the time series panel data, it needs to set the model and to make the normal conditions for the model, and to derive the homogeneity test statistic. Finally, it shows to obtain the limit distribution according to ${\chi}^2$ distribution. In actual analysis,, we can examine the result for the homogeneity test about nonlinear time series panel data which are 2 groups of stock price data.

Testing Independence in Contingency Tables with Clustered Data (집락자료의 분할표에서 독립성검정)

  • 정광모;이현영
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.2
    • /
    • pp.337-346
    • /
    • 2004
  • The Pearson chi-square goodness-of-fit test and the likelihood ratio tests are usually used for testing independence in two-way contingency tables under random sampling. But both of these tests may provide false results for the contingency table with clustered observations. In this case we consider the generalized linear mixed model which includes random effects of clustering in addition to the fixed effects of covariates. Both the heterogeneity between clusters and the dependency within a cluster can be explained via generalized linear mixed model. In this paper we introduce several types of generalized linear mixed model for testing independence in contingency tables with clustered observations. We also discuss the fitting of these models through a real dataset.