본 논문은 m개의 독립적인 일차 비선형 시계열로 구성된 패널자료의 동질성 검정에 대한 연구로서 먼저 일반적인 일차 비선형 시계열의 정상성 조건을 유도하고 이어서 동질성 검정법을 제시하고 연관된 극한분포를 규명하였다. 또한 모의실험을 하여 제안된 검정법의 모의검정력을 구하였다.
Journal of the Korean Data and Information Science Society
/
제9권2호
/
pp.95-103
/
1998
회귀모형의 선형성을 검정하는 방법으로서 Azzalini와 Bowman은 회귀모형의 오차항이 정규분포를 따른다는 가정하에서 커널회귀추정량을 이용한 유사우도비 검정이라는 비모수적 방법을 제안하였다. 붓스트랩(bootstrap)기법을 도입하여 그들의 검정방법을 변형한 커널붓스트랩검정이라는 새로운 검정법을 제시하고 모의실험을 통해 검정력을 살펴보았다. 제안된 방법은 오차항의 분포가 정규분포가 아닌 경우에도 적용이 가능하였다.
Journal of the Korean Data and Information Science Society
/
제25권2호
/
pp.305-315
/
2014
전통적으로 단순선형회귀모형에서 설명변수와 반응변수의 선형성 평가는 산점도로 쉽게 파악되었다. 보통 반복수가 존재하는 자료에서 적합결여검정은 선형성을 평가하는데 사용되었다. 하지만 반복수가 오직 하나인 경우에 선형성 검정이 수월하지 않다. 본 연구에서는 반복수가 오직 하나인 단순선형회귀모형의 선형성을 검정하는 통계량을 제안하고 모의실험 및 실증연구를 통하여 신뢰성을 파악한다.
한국증권시장을 포함한 대부분의 지역증권시장이 미국 뉴욕증권시장의 움직임에 반응하거나 동조현상을 보인다는 사실은 이미 경험적으로 혹은 통계적으로 널리 수용되고 있다. 본 연구는 그러한 반응에 비선형성이 존재하는가를 일별 주가수익률을 데이터로 활용하여 우선적으로 검정한다. 그러한 검정결과에 입각하여 비선형성을 내재화시킨 계량분석모형이 주가수익률을 설명하고 예측하는데 도움을 줄 수 있는가를 확인한다. 본 연구에서는 이러한 비선형성에 관련된 정보를 유도하기 위하여 평활전이(자기)회귀분석모형(STR)을 이용한다. STR모형은 국면전환을 야기하는 전이변수를 명시적으로 확인할 수 있고 다양한 국면전환형태를 모형에 수용할 수 있는 장점을 가지고 있다. KOSPI수익률의 비선형성에 대한 검정결과는 귀무가설인 선형성이 기각되는 것으로 나타났으며, 그러한 비선형성의 형태는 미국증권시장이 하강기에 처한 경우에 상승기에 처한 상태보다 민감한 동조현상을 보이는 것으로 나타났다. 하지만 추정된 STR모형이 주가의 변동을 설명하거나 예측하는데 여타의 모형보다 나은 능력을 가지는가에 대해서는 긍정적인 결과를 얻지 못하였다.
Communications for Statistical Applications and Methods
/
제2권1호
/
pp.13-21
/
1995
선형모형에서 오차가 대칭인 분포를 따르는지 또는 한쪽으로 치우친(skewed distribution)분포를 따르는지 검정하는 문제를 다루었다. 또 이러한 검정과정을 분석의 예비단계로 하는 회귀계수의 추정방법에 대해서 연구하고, 모의실험을 통해서 회귀계수 추정법들의 효율을 비교하였다.
감마 일반화 선형모형은 음이 아니며 치우침이 있는 반응변수에 유용한 모형으로 알려져 있다. 그러나 포아송 분포 또는 이항 분포에 기반한 일반화 선형모형에 비해 적은 관심을 받아왔다. 특히, 회귀계수의 유의성 검정에 대해서는 연구가 면밀히 되어 있지 않다. 본 논문에서는 감마 일반화 선형 모형의 검정에 대해 다양한 통계량들을 알아보고 수치 연구를 통해 그들의 성능을 비교한다. 수치 실험의 결과 부분 이탈도 검정 방법의 문제점이 나타났으며, 가능도비 검정 방법과 F-검정 방법이 좋은 성능을 보임을 확인하였다.
본 논문에서는 오차성분을 가지는 패널회귀모형에서 모형의 선형성을 검정 할 수 있는 검 정통계량을 제시하고, 유도한 검정통계량의 계산을 위하여 인공회귀방법을 이용하려한다. 모의실험 결과, Double-Length Artificial Resression(DLR)을 이용한 LM 검정통계량은 명목유의 수준을 잘 유지하고 있는 것으로 나타났으며 검정력에 있어서도 기존의 검정에 비하여 높게 나타났다.
본고(本稿)는 둘 혹은 여러 변수(變數)가 서로 비선형적(非線型的) 인과관계(因果關係)의 특정한 구조를 가질 때 주어진 관측치(觀測値)로부터 인과관계(因果關係)에 관한 올바른 추론(推論)을 유도하기 위한 새로운 이론인 Baek-Brock의 방법(方法)을 소개하고 이것을 통화(通貨), 생산(生産) 및 물가(物價)의 세 변수(變數)에 적용하여 기존의 인과성(因果性) 검정(檢定)과 어떻게 다른 결과를 얻는지 살펴본다. Baek-Brock의 방법(方法)은 일반적으로 두 변수(變數) 사이의 인과관계(因果關係)를 검정(檢定)하는 데 사용될 수 있으나 변수간(變數間)에 내재하는 실제 인과관계(因果關係)가 선형(線型)인 경우 Granger 검정법(檢定法) 등 기존의 방법(方法)이 높은 검정력(檢定力)을 보이므로 여기서는 주로 비선형인과성(非線型因果性) 검정(檢定)에 초점을 맞춘다. 본(本) 검정법(檢定法)은 인과성(因果性) 여부를 조건부확률에 기초하여 정의한 후 개별확률을 상관적분(相關積分) (correlation integral)을 사용하여 추정(推定)토록 하였다. 이 방법(方法)은 변수간(變數間)의 인과관계(因果關係)가 비선형적(非線型的)일 때 유효하다는 장점을 지니나 인과성(因果性)이 없다는 귀무가설하(歸無假說下)에서 표본수에 따른 검정통계량(檢定統計量)의 점근분포(漸近分布), 그릇된 귀무가설(歸無假說)에 대한 최대의 기각력(棄却力)을 창출하는 척도모수(尺度母數)(scale parameter) 등에 관한 이론적 배경이 미흡하다는 단점이 있다. 본고(本稿)에서는 이를 Monte Carlo 시뮬레이션을 실시하여 보완하였다. 통화(通貨), 생산(生産) 및 물가간(物價間)에는 Granger 검정법(檢定法)을 실시했을 경우 통화(通貨)와 생산(生産)만이 서로 인과성(因果性)이 있을 뿐 물가(物價)와 다른 변수간(變數間)의 인과성(因果性) 증거는 희박하였다. 한편 Baek-Brock의 검정법(檢定法)은 이미 벡터자기회귀모형(自己回歸模型)(VAR)을 통해 밝혀진 선형관계(線型關係) 외에 물가(物價)가 생산(生産) 및 통화(通貨)에 미치는 비선형인과성(非線型因果性)에 관한 추가적 정보를 제공해 주고 있으며 구체적으로 그러한 인과관계(因果關係)가 몇 기(期) 후부터 나타나는지 밝혀 준다. 그러나 이를 이용한 구체적인 모형화(模型化)는 추후의 논문을 통해 밝히기로 한다.
시계열 모형에서 모수의 수가 많으면 모수추정에 따르는 오차가 커지게 되므로 예측을 하는데 많은 어려움이 있다. 만약 여러개의 시계열 자료들이 동일한 모형에서부터 얻어졌다고 하는 동질성 가설이 채택되면 모수축약을 이룰 수 있고, 더 좋은 예측값을 얻을 수 있다. 비선형 시계열 패널 자료는 각각의 시계열마다 모수들이 있기 때문에 매우 많은 모수가 존재하게되고, 모수의 수가 많으면 모수추정에 따르는 오차가 커지게 되어 예측의 정확도가 떨어지게 된다. 패널내에 존재하는 독립적인 여러 시계열들의 동질성이 만족되면 시계열을 종합하여 모수를 추정하고 검정할 수 있다. m개의 독립적인 비선형 시계열 패널 자료의 동질성 검정을 알아보기 위하여 모형을 설정하고 이 모형에 대한 정상성 조건을 구하였고, 동질성 검정통계량을 유도했으며, 구한 검정 통계량의 극한분포가 ${\chi}^2$ 분포를 따르는 것을 보였다. 실증분석에 있어서는 비선형 시계열 자료중 중선형 시계열 모형의 동질성 검정을 하고, 실제 우리나라 주식자료를 2개의 집단으로 나누어 비선형 시계열 패널 자료의 동질성 검정에 대한 분석을 하였다.
랜덤표본에 관한 이원분할표의 독립성검정에는 통상 피어슨의 카이제곱적합도검정과 우도비검정을 사용한다. 그러나 랜덤표본이 아닌 집락자료에 관한 분할표의 경우에는 이들 검정법은 잘못된 결과를 나타낸다. 이러한 경우에는 공변량의 고정효과 외에 집락에 따른 변량효과를 함께 포함하는 일반화선형혼합모형을 고려함으로써 집락간의 이질성과 집락내의 종속성을 반영할 수 있다. 본 연구에서는 집락자료의 분할표에 대한 일반화선형혼합모형을 소개하고 실례를 통하여 이들 모형의 적합에 대해 논의한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.