• 제목/요약/키워드: 선택적 환원촉매

검색결과 257건 처리시간 0.027초

탄화수소 환원제 변화가 Fe/ZSM5 촉매를 사용하는 탈질 HC-SCR 반응에 미치는 영향 (Effect of Change of Hydrocarbon Reductant on HC-SCR over Fe/ZSM5 Catalyst)

  • 김성수;김대영;오세용;유승준;박정환;김진걸
    • 한국수소및신에너지학회논문집
    • /
    • 제22권2호
    • /
    • pp.265-273
    • /
    • 2011
  • HC-SCR was conducted using Fe/ZSM5 catalyst coated over 200 cpi cordierite in the conditions of atomspheric pressure and $200^{\circ}C-500^{\circ}C$. Among the tested hydrocarbon reductants, isobutane (i-$C_4H_{10}$) showed the highest de-$NO_x$ yield of 69% at $320^{\circ}C$ with the mole ratio of reductant/$NO_x$ =1.0. De-$NO_x$ yield resulted by the change of alkane reductant was increased as the carbon number of alkane reductant was increased. The order of increase of de-$NO_x$ yield was proportional to the order of decrease of bonding energy between C and H of reductant, where the H abstraction step from alkane molecule could be the rate controlling step of HC-SCR.

비도로용 디젤엔진의 Urea SCR system 적용을 위한 NO2/NOx ratio 예측모델 개발에 관한 연구 (Development of NO2/NOx Ratio Estimation Model for Urea-SCR System Application on Non-road Diesel Engine)

  • 강석호;김훈명;강정호;박은용;권오현;김대열
    • 한국분무공학회지
    • /
    • 제25권4호
    • /
    • pp.178-187
    • /
    • 2020
  • The current emission regulations, US Tier-4 and EU Stage-V, are only able to satisfy the regulations when all currently mass-produced emission reduction technologies such as EGR, DOC, DPF, and SCR are applied. Therefore, in this study, for the application of the Urea-SCR system to non-road diesel engines, the database was established by measuring the NO, NO2 concentration and calculating the NO2/NOx ratio based on the catalyst temperature and exhaust mass flow rate. Also, based on the measured NO2/NOx ratio data, a mathematical model was proposed to predict the NO2/NOx ratio at SCR catalyst, and the suitability of the model was verified through steady-state and transient mode. As a result of comparing the NO2/NOx ratio measured at the DOC outlet under the steady-state condition to two model values separately, the R2 was 0.9811 for the 3D map model and 0.9303 for the mathematical model. And in the case of the NO2/NOx ratio measured at the DPF outlet, the R2 was 0.9797 for the 3D map model and 0.935 for the mathematical model. It was confirmed that the R2 with the model value of the 3D Map of the mathematical model in the transient mode is 0.957, which shows high reliability.

디젤엔진 요소수 분사 SCR 시스템에서 촉매 내 암모니아 흡장량의 증가에 따른 NOx 저감효율 향상 특성에 관한 연구 (A Study on the Improvement of Diesel NOx Conversion Efficiency by Increasing the Ammonia Amount Adsorbed in a SCR Catalyst)

  • 김양화;임옥택;김홍석
    • 한국분무공학회지
    • /
    • 제25권4호
    • /
    • pp.196-203
    • /
    • 2020
  • Nowadays, urea SCR technology is considered as the most effective NOx reduction technology of diesel engine. However, low NOx conversion efficiency under low temperature conditions is one of its problems to be solved. This is because injection of UWS (Urea Water Solution) is impossible under such a low temperature condition due to the problem of insufficient of urea decomposition and urea deposits. In several previous studies, it has been reported that appropriate control of the amount of ammonia adsorbed on SCR catalyst can improve the NOx conversion efficiency under low temperature conditions. In this study, we tried to find out how much the NOx conversion efficiency increases with respect to the amount of ammonia adsorbed on the catalyst, and what the temperature conditions that the ammonia slip occurs. This study shows the results of 8 times repeated WHTC test with a diesel engine, in which UWS was injected with NH3/NOx mole ratio of '1'. Through this study, it was found that 13% of the NOx conversion efficiency of WHTC increased while the θ (ammonia adsorption rate) increased from "0%" to "22%". In addition, it is found that in cases of high θ value, the significant improvement of NOx conversion efficiency at low temperatures presented during the beginning period of WHTC and at high temperature and transient conditions presented during last part of WHTC test. The NH3 slip occurring condition was 250℃ of catalyst temperature and 10% of θ, and the amount of NH3 slip increased as the temperature and θ are increased.

Ag/γ-Al2O3 촉매상에서 탄화수소-SCR(Selective Catalytic Reduction) 연구 (A study of hydrocarbon SCR(selective catalytic reduction) on Ag/γ-Al2O3 catalyst)

  • 김문찬;이철규
    • 분석과학
    • /
    • 제18권2호
    • /
    • pp.139-146
    • /
    • 2005
  • 본 연구에서는 자동차의 배출가스중에 포함된 NO를 비선택적 촉매환원법으로 환원시켜 제거하기 위하여 Ag의 함량을 여러 가지로 달리하여 ${\gamma}-Al_2O_3$에 담지한 촉매를 제조하였고, 제조한 촉매에 대하여 온도, 산소농도, 아황산가스농도의 변화에 따른 $NO_x$의 전환율에 대하여 연구하였다. 또한 제조한 촉매의 물성분석을 통하여 촉매의 상태와 $NO_x$의 전환율과의 관계를 알아보았다. 제조한 각각의 촉매에 대하여 반응조건을 여러 가지로 달리하여 반응실험을 한 결과 $Ag/{\gamma}-Al_2O_3$ 촉매는 Ag의 함량이 2 wt%일 때, 그리고 반응온도가 약 $450^{\circ}C$일 때 가장 높은 $NO_x$ 전환율을 나타냈다. 반응실험 전 후의 촉매에 대하여 X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Temperature Programmed Reduction (TPR), Ultraviolet-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS)등의 분석 결과와 반응실험 결과를 비교하여 볼 때 Ag의 산화상태가 잘 유지되지 못하여 고온에서는 $NO_x$ 전환율이 낮아지는 것으로 나타났다.

선택적환원촉매를 적용한 중소형 경유차량의 질소산화물 저감 특성 연구 (A Study on $NO_x$ Reduction in a Light Duty Diesel Vehicle Equipped with a SCR Catalyst)

  • 박영준;홍우경;가재금;조용석;주재근;김현옥
    • 한국자동차공학회논문집
    • /
    • 제19권5호
    • /
    • pp.118-124
    • /
    • 2011
  • To reach the Euro-6 regulations of PM and $NO_x$ for light-duty diesel vehicles, it will be necessary to apply the CDPF and the de-$NO_x$ catalyst. The described system consists of a catalytic configuration, where the CDPF is placed downstream of the diesel engine and followed by a urea injection unit and a urea-SCR catalyst. One of the advantages of this system configuration is that, in this way, the SCR catalyst is protected from PM, and both white PM and deposits become reduced. In the urea-SCR system, the injection control of reductant is the most important thing in order to have good performance of $NO_x$ reduction. The ideal ratio of $NH_3$ molecules to $NO_x$ molecules is 1:1 based on $NH_3$ consumption and having $NH_3$ available for reaction of all of the exhaust $NO_x$. However, under the too low and too high temperature condition, the $NO_x$ reduction efficiency become slower, due to temperature window of SCR catalyst. And space velocity also affects to $NO_x$ conversion efficiency. In this paper, rig-tests were performed to evaluate the effects of $NO_x$ and $NH_3$ concentrations, gas temperature and space velocity on the $NO_x$ conversion efficiency of the urea-SCR system. And vehicle test was performed to verify control strategy of reductatnt injection. The developed control strategy of reductant injection was improved over all $NO_x$ reduction efficiency and $NH_3$ consumption in urea-SCR system. Results of this paper contribute to develop urea-SCR system for light-duty vehicles to meet Euro-5 emission regulations.

미생물 유래 Styrene monooxygenase를 이용한 광학활성 styrene oxide 유도체의 비대칭합성 (Microbial styrene monooxygenase-catalyzed asymmetric synthesis of enantiopure styrene oxide derivatives)

  • 이은열;박성훈
    • KSBB Journal
    • /
    • 제24권3호
    • /
    • pp.239-245
    • /
    • 2009
  • 광학활성 styrene oxide는 친전자성반응, 친핵성반응, 산 염기반응, 산화 환원반응 등 다양한 반응을 유도할 수 있어 광학활성 중간체로 널리 사용될 수 있다. Styrene monooxygenase (SMO)를 생촉매로 이용하여 styrene의 side-chain 이중결합에 입체선택적으로 에폭사이드 링을 도입시켜 광학활성 styrene oxide 유도체를 제조할 수 있다. 다양한 기질 특이성을 가진 신규 SMO 생촉매 개발, 이상계 반응 시스템, in situ 분리 공정, multimeric oxygenase 효소발현 및 안정화 기술 개발, NADH 등 cofactor regeneration 등에 대한 연구개발이 활발히 진행되고 있어, 미생물유래의 SMO를 생촉매로 활용하는 광학활성 styrene oxide 유도체 제조 기술의 상업화가 기대된다.

선택적 촉매환원법에 의한 배기가스중 NOx 저감에 관한 연구 (A Study of NOx Removal in Flue Gas by Selective Catalytic Reduction)

  • 박해경;김경림;최병선;이인철;최익수
    • 한국대기환경학회지
    • /
    • 제4권2호
    • /
    • pp.38-46
    • /
    • 1988
  • NOx is an important air pollution material which is generated when fossil fuels are burning, NOx removal in flue gas by selective catalytic reduction was studied over various catalysts in a fixed bed continuous flow reactor. The ranges of experimental conditions were at the temperatures between $200^\circ$C and $350^\circ$C, the $NH_3/NOx$ mole ratios between 0.8 and 1.4, oxygen concentrations between 1.5% and 3% and the space velocities between 5, 000 $hr^-1$ and 12, 500 $hr^-1$. The efficiency of NOx removal in the ranges of experimental conditions was highest at the temp. of 300$^\circ$C, oxygen concentration of 2.5-2.6% and $NH_3/NOx$ mole ratios of 1.0-1.2. The catalyst with high activity for NOx removal in flue gas was found to be $MoO_3-V_2O_5/TiO_2$.

  • PDF

엔진 냉각수 순환에 의한 urea-SCR 시스템용 요소수의 동결 및 해동 특성 (Frozen and Melting Characteristics of Urea-aqueous Solution for Urea-SCR System by Circulation of Engine Coolant)

  • 최병철;김영권;김화남
    • 동력기계공학회지
    • /
    • 제15권4호
    • /
    • pp.42-47
    • /
    • 2011
  • The purpose of this study is to investigate the best melting condition with various winding number of a heating pipe, supplying quantity of engine coolant and coolant temperature at the inlet of the heating pipe. Also, it is to suggest getting method of an appropriate quantity of the agent for the urea-SCR system within 10 minutes. For this matter, this study identifies the temperature distribution of inside of urea-tank while it is frozen at the low temperature condition, and suggests the best melting condition of the frozen urea within 10 minutes. From the results, it was found that 2L of melted urea was obtained by the coolant flow rate of 200L/hr at $70^{\circ}C$ for 10 minutes from the start of engine operating.

디젤엔진의 NOx 저감을 위한 SCR-DeNOx 후처리 시스템 성능 예측 (Performance Prediction of SCR-DeNOx System for Reduction of Diesel Engine NOx Emission)

  • 김만영
    • 한국자동차공학회논문집
    • /
    • 제11권3호
    • /
    • pp.71-76
    • /
    • 2003
  • A numerical simulation of selective catalytic reduction (SCR) for NO with $NH_3$ is conducted over the $V_2O_5/TiO_2$ and $WO_3-V_2O_5/TiO_2$ catalysts. The governing $NH_3$ and NO transport equations are considered by using the time-dependent FCT (Flux-Corrected Transport) algorithm. After a validating simulation for $NH_3$ step feed and shut-off experiments is analyzed, transient behavior of $NH_3$ and NO concentration in a SCR catalyst is investigated by changing such parameters as inflow $NH_3$ concentration, temperature of the catalyst, and $NH_3$/NOx ratios.

ABS LNG Ready - S Notation 적용에 따른 기본설계 변경사항 검토 (A Study on the Basic design changes according to the application of LNG Ready - S Notation)

  • 송다혜
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2017년도 특별논문집
    • /
    • pp.54-58
    • /
    • 2017
  • The vessels which are operated in ECA (Emission Control Area) after $1^{st}$ January 2016 shall be complied with revised NOx emission requirement (Tier III). Effective solutions for NOx emission requirement are SCR (Selective Catalytic Reduction), EGR (Exhaust Gas Recirculation) and Installation of LNG Dual Fuel Engine. This study is considered the design modification as per application of LNG Ready notation. In case of LNG Ready - S notation, the vessel shall be retrofitted the Main engine with Dual fuel engine and LNG Fuel system after delivery. On this paper, the entire process for design modification was explained to meet the requirement for LNG Ready notation.

  • PDF