• Title/Summary/Keyword: 선택적환원

Search Result 422, Processing Time 0.024 seconds

The Performance Test of SCR System in a Heavy-Duty Diesel Engine (대형디젤기관에 적용된 선택적 환원촉매장치 성능시험에 관한 연구)

  • Baik, Doo-Sung;Lee, Seang-Wock
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.19-25
    • /
    • 2008
  • Selective Catalytic Reduction is effective in the reduction of NOx emission. This research focused to evaluate the performance of a urea-SCR system and was conducted in two procedures. One is SCR reactor test using model gas in order to provide an optimal injection condition itself. In this step, some parametric study on emission temperature, space velocity, aspect ratio and the formation of urea spray were made by using flow visualization and Computation Fluid Dynamics techniques. The basic simulation results contributed in determining the layout for an actual engine test. The other is an engine performance and emission test. The urea injector was placed at the opposite direction of exhaust gases emitted into an exhaust duct and an optimal amount of a reducing agent is estimated accurately under different engine loads and speeds. Furthermore, the variation of NOx emission and applied amount of urea was investigated in terms of modes under the condition of with and without SCR, and other emissions such as PM, CO and NMHC were evaluated quantitatively as well. This research may provide fundamental data for the practical use of urea-SCR in future.

The Facile Synthesis of N-Substituted 2,5-Dimethylpyrrolidine Derivatives from 2,5-Hexanedione and a Variety of Primary Amines using Tetracarbonylhydridoferrate(O) as a Selective Reducing Agent (II) (선택적 환원시약인 사카르보닐 철산염(O)을 이용한 N-치환-2,5-디메틸 피로리딘 유도체의 용이한 합성)

  • Sang Chul Shim;Keun Tai Huh;Kee Doo Kim;Woo Sik Kim
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.389-393
    • /
    • 1986
  • The reaction of 2,5-hexanedione with a variety of primary amines using tetracarbonylhydridoferrate(O) as a selective reducing agent at room temperature or 60${\circ}C$ under an atmosphere of carbon monoxide gave the corresponding N-substituted 2,5-dimethylpyrrolidine derivatives. The reaction of synthesized 5-nitro-2-hexanone with benzaldehyde in the presence of tetracarbonylhydridoferrate(O) at 150${\circ}C$ under an atmosphere of carbon monoxide in an autoclave also gave N-benzyl-2,5-dimethylpyrrolidine in moderate yield. The mechanism of these reactions was investigated.

  • PDF

A Comparison between Bacterial Cr(VI) Resistance and Cr(VI) Reduction among Environmental Isolates (미생물의 크롬내성과 크롬환원의 상호 비교)

  • 오영숙;최성찬
    • Korean Journal of Microbiology
    • /
    • v.33 no.2
    • /
    • pp.125-130
    • /
    • 1997
  • Microbial reduction of hexava1ent(VI) to trivalent(lII) chromium is regarded as one of the mechanisms that confers resistance to bacteria. In order to verify this hypothesis, we compared Cr(VI) resistance with Cr(VI) reduction among 20 phenotypically distinct environmental isolates from Cr-contaminated and uncontaminated soils. With glucose as an electron donor, Cr(VI) reduction by washed cell suspensions ranged from 0.014 to 0.305 mM Cr(VI) reduced $h^1$. Cr(VI) resistance of the isolates were measured by growth inhibitions on a liquid medium containing 2 mM Cr(VI) based on their decrease of $A_{630}1$ as compared to the controls without Cr(VI). The isolates had a broad range of resistance from no inhibition to 93.4% inhibition of their growth. Upon correlation analysis, there was no significant relationship between those two phenomena. At a population level, a comparison of % resistant viable counts among the Cr-contaminated and uncontaminated soils showed 19.1 % and 0.4% of their total viable counts, respectively. The difference of % resistance between two site,. strongly suggested that the Cr(VI) present in the soils influences natural selection for resistant phenotypes. However, it is unlikely that the Cr(VI) resistance is dependent solely on the reduction as judged by the correlation analysis.

  • PDF

Effect of Containing Promoter on SCR Catalysts (SCR 촉매에 포함된 조촉매 영향)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.474-481
    • /
    • 2018
  • The policy-making and technological development of eco-friendly automobiles designed to increase their supply is ongoing, but the internal combustion engine still accounts for approximately 95% of automobiles in use. To meet the stricter emission regulations of internal combustion engines based on fossil fuels, the proportion of after-treatments for vehicles and (ocean going) vessels is increasing continuously. As diesel engines have high power and good fuel economy in addition to less CO2 emissions, their market share is increasing not only in commercial vehicles, but also in passenger cars. Because of the characteristics of the diesel combustion, however, NOx is generated in localized high-temperature combustion regions, and particulates are formed in the zones of diffusion combustion. LNT and urea-SCR catalysts have been developed for the after-treatment of exhaust gas to reduce NOx in diesel vehicles. This study examined the effect of a containing promoter on SCR catalysts to cope with the severe exhaust gas regulation. The de-NOx performance of the Mn-SCR catalyst was the best, and the de-NOx performance was improved as the ion exchange rate between Mn ion and Zeolyst was good and the activation energy was low. The de-NOx performance of the 7Cu-15Ba/78Zeoyst catalyst was 32% at $200^{\circ}C$ and 30% at $500^{\circ}C$, and showed the highest performance. The NOx storage material of BaO loaded as a promoter was well dispersed in the Cu-SCR catalyst and the additional de-NOx performance of BaO was affected by the reduction reaction of the Cu-SCR catalyst. Among the three catalysts, the 7Cu-15Ba/Zeolyst SCR catalyst was resistant to thermal degradation. The same type of CuO due to thermal degradation migrates and agglomerates because BaO reduces the agglomeration of the main catalyst CuO particles.

The Selective Catalytic Oxidation of Ammonia: Effect of Physicochemical Properties on Pt/TiO2 (Pt/TiO2 촉매의 물리화학적 특성이 NH3-SCO 반응활성에 미치는 영향)

  • Shin, Jung Hun;Kim, Dong Ho;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.279-285
    • /
    • 2017
  • In this study, the study of the selective catalytic oxidation (SCO) for controlling the $NH_3$ at $200{\sim}350^{\circ}C$ range was investigated. Physicochemical properties of the catalysts were determined using XRD and XPS analysis. In the case of catalytic activity according to thermal treatment condition, the reduction catalyst showed better activity than that of using the calcination catalyst. It was confirmed that the valence state of reduction catalyst was mainly $Pt^{2+}$ and $Pt^0$ as analyzed by XPS. Also, when comparing the reaction activities of $Pt/TiO_2$ catalysts according to the reduction temperature, the $NH_3$ conversion of the catalyst reduced at $700^{\circ}C$ showed the most excellent activity. However, the best activity of $NH_3$ conversion to $N_2$ was obtained for the catalyst reduced at $600^{\circ}C$.

NO Removal by Photocatalytic Reaction with $TiO_2$ Catalyst (광촉매를 이용한 질소산화물의 제거)

  • 임탁형;정상문;김상돈
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1998.05a
    • /
    • pp.69-72
    • /
    • 1998
  • 지속적인 경제성장과 산업발달과 더불어 에너지 소비량이 크게 증가하고 있고, 환경문제가 심각해지고 있다. 이에 따라 대기로 배출되는 질소산화물은 산성비 및 도심스모그의 주범이 되는 물질로서, 그 미치는 파장이 사회적으로 매우 크다. 이러한 질소산화물을 제거하는 방법으로서, 기존의 선택적 촉매 및 비촉매 환원법은 고온을 필요로 하므로, 설치 및 운전비가 많이 요구되는 방법들을 대체하기 위해 상온영역에서 조업되는 광촉매를 개발해서, 신기술을 확립하고, 환경규제에 대해 능동적으로 대처하여야 한다. 기존의 탈질공정에서는 부가적인 에너지가 필요하므로, 광촉매를 통한 질소산화물의 저감기술은 에너지 소비가 작다는 장점이 있다. (중략)

  • PDF

The Effects of Reductants on the Behaviors of Fe Selective Chlorination using an Ilmenite Ore (일메나이트 광의 Fe 선택염화 거동에 미치는 환원제의 영향에 관한 연구)

  • Son, Yongik;Sohn, Ho-Sang;Jung, Jae-Young
    • Resources Recycling
    • /
    • v.27 no.3
    • /
    • pp.30-38
    • /
    • 2018
  • In this study, the behaviors of Fe selective chlorination in ilmenite ore by using PVC or $CO-Cl_2$ gas mixture as reducing agents under the condition of 1173 K, for 60 minutes were investigated. The weight loss ratio was 28% when PVC was applied as the reducing agent. The condensate formed at the outlet of reaction tube was identified as $FeCl_2$ by X-ray diffraction analysis. From these results, it was observed that iron in ilmenite ore reacted with HCl gas and Fe was selectively removed in the form $FeCl_2$. However, when $CO-Cl_2$ gas mixture was used as a reducing agent, the weight reduction ratio was 54%, and the condensate formed at the outlet of reaction tube after the experiment was estimated to be $FeCl_3$. It was observed that the ilmenite ore reacted with the $CO-Cl_2$ gas mixture and was simultaneously removed in the form of $FeCl_3$ and $TiCl_4$. However, the results of X-ray diffraction of ilmenite ore after the reaction showed that Fe was almost removed.

The Electrochemical Studies of Non-enzymatic Glucose Sensor on the Nickel Nanoparticle-deposited ITO Electrode (ITO 전극 위에 고정된 니켈 나노 입자를 이용한 무효소 혈당센서에 관한 전기화학적인 연구)

  • Oh, In-Don;Kim, Samantha;Choi, Young-Bong
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.3
    • /
    • pp.164-171
    • /
    • 2014
  • A highly sensitive and selective non-enzymatic glucose sensor has gained great attention because of simple signal transformation, low-cost, easily handling, and confirming the blood glucose as the representative technology. Until now, glucose sensor has been developed by the immobilization of glucose oxidase (GOx) on the surface of electrodes. However although GOx is quite stable compared with other enzymes, the enzyme-based biosensors are still impacted by various environment factors such as temperature, pH value, humidity, and toxic chemicals. Non-enzymatic sensor for direct detecting glucose is an attractive alternative device to overcome the above drawbacks of enzymatic sensor. Many efforts have been tried for the development of non-enzymatic sensors using various transition metals (Pt, Au, Cu, Ni, etc.), metal alloys (Pt-Pb, Pt-Au, Ni-Pd, etc.), metal oxides, carbon nanotubes and graphene. In this paper, we show that Ni-based nano-particles (NiNPs) exhibit remarkably catalyzing capability for glucose originating from the redox couple of $Ni(OH)_2/NiOOH$ on the surface of ITO electrode in alkaline medium. But, these non-enzymatic sensors are nonselective toward oxidizable species such as ascorbic acid the physiological fluid. So, the anionic polymer was coated on NiNPs electrode preventing the interferences. The oxidation of glucose was highly catalyzed by NiNPs. The catalytically anodic currents were linearly increased in proportion to the glucose concentration over the 0~6.15 mM range at 650 mV versus Ag/AgCl.

Effects of Organic and Inorganic Additives on Selective Non Catalytic Reduction Reaction of NOx in a Pilot Scale Flow Reactor (파일럿 규모의 흐름반응기에서 유기 및 무기 첨가제가 질소산화물의 선택적 무촉매 환원반응에 미치는 영향)

  • Park, Soo Youp;Yoo, Kyung Seun;Lee, Joong Kee;Park, Young Kwon
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.540-546
    • /
    • 2006
  • Effects of organic and inorganic additives on the SNCR reaction of NOx were investigated in a pilot scale flow reactor with a variation of operating parameters. NOx reduction efficiency increased with the increase of a residence time and an initial NOx concentration. NOx reduction reaction by urea solution started to appear about 850 and then reached to maximum value around $970^{\circ}C$. NOx reduction efficiency also increased with the increase of NSR (Normalized Stoichiometric Ratio) up to 2.0. Addition of ethanol and phenol as an organic additives shifted the optimum temperature window to lower region with decreasing the maximum NOx reduction efficiency. This might be due to the side reaction of hydrocarbon in ethanol structure. NaOH addition widened the temperature window and enhanced the NOx reduction efficiency about 10% due to the chain reaction of NaOH and the reduction of $N_2O$.

Selection of the Best Oxygen Carrier for Chemical Looping Combustion in a Bubbling Fluidized Bed Reactor (기포유동층에서 케미컬루핑 연소시스템을 위한 최적 산소전달입자 선정)

  • Kim, Hana;Kim, Jung-Hwan;Yoon, Joo-Young;Lee, Doyeon;Baek, Jeom-In;Ryu, Ho-Jung
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.63-69
    • /
    • 2018
  • The reduction reaction characteristics and physicochemical properties were studied for the selection of oxygen carrier, which is the core of the chemical looping combustion (CLC) technology. Fuel conversion and $CO_2$ selectivity of oxygen carrier according to the concentration of reducing gas and the reduction temperature using three kinds of oxygen carrier (SDN70, N018-R2, N016-R4) were measured and compared. In addition, Attrition Index (AI) and BET surface area were measured to analyze the attrition resistance and the surface characteristics of the oxygen carrier. As a result, it was confirmed that all three kinds of oxygen carrier were suitable for use in chemical roofing combustion system, and the best particle was determined to be N016-R4.