• Title/Summary/Keyword: 선택적환원촉매

Search Result 258, Processing Time 0.025 seconds

A Numerical Analysis on the Flow Characteristics inner Catalytic Reactor for Marine SCR System (선박용 SCR 시스템의 촉매반응기 내부 유동특성에 관한 수치해석)

  • Yi, C.S.;Suh, J.S.;Yun, J.H.;Lim, B.J.;Park, C.D.;Chung, K.Y.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2012.06a
    • /
    • pp.125-126
    • /
    • 2012
  • The key issues for the reduction technologies of the exhaust gas from diesel engine being developed are to reduce particulate matters and NOx. Performance of NOx removal in SCR process depends on such various factors as catalyst factors(catalyst composition, shape, velocity, etc.), exhaust gas temperature and velocity distribution. In this study checked flow uniformity with the flow characteristics in the SCR reactor by using STAR CCM+. The pressure drop of experiment and simulation had similar result more than 90% at catalytic Cell. Also, flow uniformity calculated about 0.9036 ant 1st catalytic ind SCR reactor.

  • PDF

DeNOx by Hydrocarbon-Selective Catalytic Reduction on Ag-V/γ-Al2O3 Catalyst (Ag-V/γ-Al2O3 촉매상에서 탄화수소-Selective Catalytic Reduction에 의한 질소산화물 저감)

  • Kim, Moon-Chan;Lee, Cheal-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.328-336
    • /
    • 2005
  • In order to remove the NO contained in exhaust gas by the non-selective catalyst reduction method, the catalysts were prepared by varing the loading amount of Ag and V into ${\gamma}-Al_2O_3$. The conversion of $NO_x$ using the prepared catalysts was studied by varying the temperatures, $O_2$ concentrations and $SO_2$ concentrations using. The influence of the catalyst structure on $NO_x$ conversion was studied through the analysis of the physical properties of the prepared catalysts. In the case of $AgV/{\gamma}-Al_2O_3$ catalyst, the $NO_x$ conversion was lower than that of $Ag/{\gamma}-Al_2O_3$ at higher temperatures but higher than that of $Ag/{\gamma}-Al_2O_3$ at lower temperatures. Even though $SO_2$ was contained in the reaction gas, the $NO_x$ conversion did not decrease. Based on the analysis including XRD, XPS, TPR, and UV-Vis DRS before and after the experiments, the experimental results were examined. The results indicated that, $NO_x$ conversion decreased at higher temperatures since Ag oxide could not be maintained well due to the addition of V, whereas it increased at temperatures lower than $300^{\circ}C$ due to the catalytic action of V.

A Study on the Synthesis of $\textrm{TiO}_2$for Catalyst Carrier from $\textrm{TiOSO}_4$ and $\textrm{TiO(\textrm{SO}_4)_2$Solutions ($\textrm{TiOSO}_4$$\textrm{TiO(\textrm{SO}_4)_2$용액으로부터 촉매 담체용 $\textrm{TiO}_2$합성에 관한 연구)

  • Yu, Yeon-Tae;Choe, Yeong-Yun;Kim, Byeong-Gyu;Nam, Cheol-U;An, Byeong-Guk
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1062-1068
    • /
    • 1999
  • 고정원으로부터 배출되는 질소산화물의 저감 기술 중에서 선택적 촉매 환원법(SCR법)은 가장 경제적이고 효율적인 방법으로 알려져 있다. 이 SCR 촉매의 탈질능을 향상시키기 위하여,$ TiOSO_4$ 및 Ti($SO_4$)$_2$용액으로부터 비표면적이 넓은 $TiO_2$의 비표면적 및 결정구조에 미치는 영향과 이들의 상관관계에 대하여 조사하였다. $TiOSO_4$용액으로부터 합성한 $TiO_2$의 최대 비표면적은 $382\m^2$/g이었고, Ti($SO_4$)$_2$용액으로부터 합성한 $TiO_2$의 최대 비표면적은 $335\m^2$/g이었으며, $TiO_2$는 비정질 형태의 결정구조를 보였다. 하소처리에 의해 비정질 $TiO_2$는 결정화되었고, 결정 중에 함유되어 있는 불순물은 $TiO_2$의 결정화를 억제하였다.

  • PDF

A Study on the Regeneration of SCR Catalyst Deactivated by Unburned Carbon Deposition (탄소침적으로 피독된 탈질 촉매의 재생에 관한 연구)

  • Moon, Seung-Hyun;Lee, Seung-Jae;Ryu, In-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.10
    • /
    • pp.928-935
    • /
    • 2010
  • A bag filter system was partially burnt down during a trial run of waste wood incineration boiler. This brought about unburned hydrocarbon which caused a rapid deactivation of low temperature SCR catalyst set up in two stage after the bag filter. The deactivated catalyst was investigated in order to trace the origin by several characterization methods such as XRD, EDX, BET, TGA, SEM. The deactivated catalyst was regenerated by different methods such as acid washing, water washing in ultrasonication, and calcination treatment under air condition. It is found the calcination treatment under air condition at $450^{\circ}C$ for 2 hours to be the best regeneration method. The catalytic activity was measured in the form of 2 cm ${\times}$ 2 cm ${\times}$ 10 cm (catalyst weight 10 g) honeycomb type. A deNOx efficiency of the regenerated catalyst showed 100% at $180^{\circ}C$ which is the same level of fresh one.

Selective Catalytic Reduction (SCR) of NOx with NH3 on Sb-promoted VWTi Catalysts (Sb 첨가에 따른 VWTi 촉매의 암모니아 선택적 촉매 환원(SCR)을 통한 질소산화물 저감)

  • Kim, Su Bin;Choi, Gyeong Ryun;Shin, Jung Hun;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.35-41
    • /
    • 2021
  • VWTi, which is used as a commercial catalyst in NH3-SCR, exhibits excellent denitrification performance at 300 to 400 ℃, but there is a problem that efficiency decreases at low temperatures below 300 ℃. Research on catalysts containing promoter to increase low-temperature denitrification efficiency is steadily progressing. However, research on the cause of the improvement in low-temperature denitrification efficiency of the catalyst and the catalyst properties is insufficient. In this study, it was confirmed that by adding Sb to VWTi, denitrification performance was improved by more than 10% in NH3-SCR reaction below 300 ℃. At this time, the space velocity and the size of the catalyst particles were controlled to exclude the influence of external/internal diffusion. In addition, the catalytic properties according to the presence or absence of Sb were investigated by performing BET, TEM/EDS, O2-TPD, H2-TPR and DRIFTs analysis. It was judged that the addition of Sb increased the adsorbed oxygen species on the surface of the catalyst, thereby enhancing the redox properties of the catalyst at low temperature and exhibiting excellent denitrification performance.

A Study of the characteristics of NOx measurement and analysis methods of the SCR system for ships (선박용 SCR 시스템 NOx 측정 및 분석 방식의 특성 연구)

  • Kim, Sung-Yoon;Lee, Young-Ho;Kim, Min;Park, Sam-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.387-392
    • /
    • 2015
  • A method for measuring and analyzing the $NO_x$ in ships is described in $NO_x$ Technical Code 2008. The analysis device, as required by the Code, has been to use a Chemi-luminescence detection method or Heated Chemi-luminescence detection. on the other hand, selective catalytic reduction using $NH_3$ as a reducing agent has an interference effect on the analyzer, and causes measurement error. In this study, the Chemi-luminescence detection method was examined according to how it affects the concentration of $O_2$, CO, $SO_2$, $NH_3$. Fourier transform infrared spectrometry analysis equipment and measurement methods were compared. In order to confirm the effect of the physical interference of the measuring device, it was confirmed by decomposing a measuring device. Consequently, white precipitate and moisture were generated inside the chemiluminescence detection system and I found that affecting interference. The influence of interference highlights the need to consider the minimized $NO_x$ measurement method.

A study of hydrocarbon SCR(selective catalytic reduction) on Ag/γ-Al2O3 catalyst (Ag/γ-Al2O3 촉매상에서 탄화수소-SCR(Selective Catalytic Reduction) 연구)

  • Kim, Moon-Chan;Lee, Cheal-Gyu
    • Analytical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.139-146
    • /
    • 2005
  • Removal of NO contained in automobile exhaust gas was accomplished by the non-selective catalyst reduction method. The catalysts were prepared through loading of a specific amount of Ag into ${\gamma}-Al_2O_3$. The conversion of $NO_x$ was studied by varying the temperatures, $O_2$ concentrations and $SO_2$ concentrations for the prepared catalysts. The influence of the structure of catalyst to $NO_x$ conversion was followed through the analysis of the physical properties of the prepared catalysts. Experiments were conducted on each of the catalysts by varying the reaction conditions to find an optimum condition. The catalyst $Ag/{\gamma}-Al_2O_3$ shows a highest $NO_x$ conversion when the Ag content was 2 wt% and a reaction temperature of about $450^{\circ}C$. and after conducting the experiments, samples of before and after experiments analyzed using XRD, XPS, TPR, and UV-Vis DRS experiments. The result indicated that when Ag oxide content could not be maintained well at high temperatures $NO_x$ conversion decreased.

A Convergence Study on the Effects of NH3/NOx Ratio and Catalyst Type on the NOx Reduction by Urea-SCR System of Diesel Engine (디젤엔진의 Urea-SCR 시스템에 의한 NH3/NOx 비율 및 촉매 방식이 NOx 저감에 미치는 영향에 관한 융합연구)

  • Yoon, Heung-Soo;Ryu, Yeon-Seung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.4
    • /
    • pp.131-138
    • /
    • 2019
  • Diesel engines have important advantages over its gasoline counterpart including high thermal efficiency, high fuel economy and low emissions of CO, HC and $CO_2$. However, NOx reducing is more difficult on diesel engines because of the high $O_2$ concentration in the exhaust, marking general three way catalytic converter ineffective. Two method available technologies for continuous NOx reduction onboard diesel engines are Urea-SCR and LNT. The implementation of the Urea-SCR systems in design engines have made it possible for 2.5l and over engines to meet the tightened NOx emission standard of Euro-6. In this study, we investigate the characteristics of NOx reduction with respect to engine speed, load, types of catalyst and the $NH_3$/NOx ratio and present the conditions which maximize NOx reduction. Also we provide detailed experimental data on Urea-SCR which can be used for the preparation for standards beyond Euro-6.

A Study on the Installation of SCR System for Generator Diesel Engine of Existing Ship (기존 선박의 디젤발전기용 SCR 시스템 설치에 관한 연구)

  • Ryu, Younghyun;Kim, Hongryeol;Cho, Gyubaek;Kim, Hongsuk;Nam, Jeonggil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.412-417
    • /
    • 2015
  • The IMO MEPC has been increasingly strengthening the emission standard for marine environment protection. In particular, nitrogen oxide (NOx) emissions of all ocean-going ships built from 2016 will be required to comply with the Tier-III regulation. In this study, a vanadia based SCR (Selective Catalytic Reduction) system developed for ship application was installed on a diesel engine for power generation of the training ship T/S SAENURI in Mokpo National Maritime University. For the present study, the exhaust pipeline of the generator diesel engine was modified to fit the urea SCR system. This study investigated the NOx reduction performance according to the two kind of injection method of urea solution (40%): Auto mode through the PLC (Programable Logic Control) and Manual mode. We were able to find the ammonia slip conditions when in manual mode method. So, the optimal urea injection quantity can be controlled at each engine load (25, 35, 50%) condition. It was achieved 80% reduction on nitrogen oxide. Furthermore, we found that the NOx reduction performance was better with the load up-down (while down to 25% from 50%) than the load down-up (while up to 50% from 25%) test.

The Study on the Effect of Phosphorous Poisoning of V/W/TiO2 Catalyst According to the Addition of Sb in NH3-SCR (NH3-SCR에서 Sb 첨가에 따른 V/W/TiO2 촉매의 Phosphorous 피독 영향 연구)

  • Jung, Min Gie;Shin, Jung Hun;Lee, Yeon Jin;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.516-523
    • /
    • 2021
  • A study using selective catalytic reduction (SCR) was conducted in conjunction with ammonia as a reducing agent for controlling nitrogen oxides, a typical secondary inducer of fine dust in the atmosphere. For NH3-SCR experiments, a commercial catalyst of V/W/TiO2 only and also V/W-Sb/TiO2 catalyst with Sb were used, and phosphorous durability was confirmed. As a result of NH3-SCR experiments, it was confirmed that the addition of Sb to V/W/TiO2 had durability against phosphorous. In addition, the physical and chemical properties were comparatively analyzed through BET, XPS, H2-TPR, NH3-TPD, and FT-IR analysis. From the anaylsis results, when Sb was added to V/W/TiO2 catalyst, P was also added resulting in the formation of SbPO4 and the generation of VOPO4 was suppressed. The phosphorous durability was confirmed by maintaining the redox characteristics of the catalyst before P was added.