• Title/Summary/Keyword: 선택적촉매환원공정

Search Result 50, Processing Time 0.033 seconds

The Effect of HCl Gas on Selective Catalytic Reduction of Nitrogen Oxide (질소산화물의 선택적 환원 제거시 염화수소기체가 촉매에 미치는 영향)

  • Choung, Jin-Woo;Choi, Kwang-Ho;Seong, Hee-Je;Chai, Ho-Jung;Nam, In-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.609-617
    • /
    • 2000
  • This study is aimed at investigating an effect of HCl gas on selective reduction of NOx over a CuHM and $V_2O_5-WO_3/TiO_2$ catalyst. SCR process is the most effective method to remove NOx, but catalyst can be deactivated by the acidic gas such as HCl gas which is also included in flue gas from the incinerator. In dry condition of flue gas, the CuHM catalyst treated by HCl gas has shown higher NO removal activity than the fresh catalyst. The activity of the catalyst can be restored by treating at $500^{\circ}C$. On the contrary. $V_2O_5-WO_3/TiO_2$ catalyst is obviously deactivated by HCl and the deactivation increases in proportion to the concentration of HCl gas. The deactivated catalyst is not restored to it's original activity by heat treatment for regeneration. In wet flue gas stream, the CuHM catalyst has shown lower activity than fresh catalyst and $V_2O_5-WO_3/TiO_2$ catalyst was severely deactivated by HCl treatment. The activity loss of catalysts are mainly due to the decrease of Br$\ddot{o}$nsted acid site on the catalyst surface by $NH_3$ TPD. The change of BET surface area of CuHM catalyst after the reaction isn't observed but $V_2O_5-WO_3/TiO_2$ catalyst is observed. The amount of $Cu^{{+}{+}}$ and $V_2O_5$ is decreased after the reaction. From these results, it is expected that CuHM catalyst should be better than $V_2O_5-WO_3/TiO_2$ catalyst for its application to the incineration of flue gas.

  • PDF

Deactivation of SCR Catalysts Applied in Power Plants (화력발전소 SCR 촉매의 활성저하 특성)

  • Lee, Jung-Bin;Kim, Dong Wha;Lee, Chang-Yong
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.104-110
    • /
    • 2010
  • Deactivation of SCR catalysts applied in coal, orimulsion, and LNG power plants in Korea were studied for the regeneration of the deactivated catalyst. The catalysts were characterized by XRD, ICP-AES, BET and SEM, and were examined for ammonia SCR. Deactivation of SCR catalyst applied in coal power plant was mainly caused by the blockade of the pore due to the deposition of sulfate and particulate related to the ingredients of the fuel. The surface area of SCR catalyst applied in orimulsion power plant decreased considerably by the accumulation of the compounds of vanadium, sulfur, and magnesium on the surface of the catalyst. The compounds of vanadium and sulfur were related to the ingredients of the fuel, and the compound of magnesium was related to the additive of the fuel. The activity of the deactivated catalyst for ammonia SCR, however, decreased slightly. Despite the long use for more than two-year, deactivation of SCR catalyst applied in LNG power plants hardly occurred.

Recovery of the Vanadium and Tungsten from Spent SCR Catalyst Leach Solutions by Hydrometallurgical Methods (SCR 폐촉매 침출액으로부터 습식제련법에 의한 바나듐, 텅스텐의 회수)

  • Choi, In-Hyeok;Moon, Gyeonghye;Jeon, Jong-Hyuk;Lee, Jin-Young;Jyothi, Rajesh Kumar
    • Resources Recycling
    • /
    • v.29 no.2
    • /
    • pp.62-68
    • /
    • 2020
  • In new millennium, wide-reaching demands for selective catalytic reduction (SCR) catalyst have been increased gradually in new millennium. SCR catalyst can prevent the NOx emission to protect the environment. In SCR catalyst the main composition of the catalyst is typically TiO2 (70~80%), WO3 (7~10%), V2O5 (~1%) and others. When the SCR catalysts are used up and disposed to landfills, it is problematic that those should exist in the landfill site permanently due to their extremely low degradability. A new advanced technology needs to be developed primarily to protect environment and then recover the valuable metals. Hydrometallurgical techniques such as leaching and liquid-liquid extraction was designed and developed for the spent SCR catalyst processing. In a first stage, V and W selectively leached from spent SCR catalyst, then both the metals were processed by liquid-liquid extraction process. Various commercial extractants such as D2EHPA, PC 88A, TBP, Cyanex 272, Aliquat 336 were tested for selective extraction of title metals. Scrubbing and stripping studies were tested and optimized for vanadium and tungsten extraction and possible separation. 3rd phase studies were optimized by using iso-decanol reagent.

Trend of Nitrogen Oxide Reduction Technologies in Cement Industry (시멘트 산업에서의 질소산화물 저감 기술 동향)

  • Seo, JunHyung;Kim, YoungJin;Cho, KyeHong;Cho, JinSang;Han, KyungHo;Yoon, DoYoung
    • Resources Recycling
    • /
    • v.29 no.6
    • /
    • pp.114-124
    • /
    • 2020
  • In the cement industry, NOx emission is recognized as an important problem, and NOx reduction technologies can be divided into process change, staged combustion, low NOx burner, selective non-catalytic reduction and selective catalytic reduction method. The operation of the selective non-catalytic reduction method, which is the most used in the cement industry, is expected to make it difficult to meet the emission standards to be strengthened in the future, and it is necessary to improve equipment such as SCR and secure technologies. Recently, we are developing technologies for simultaneous application of SNCR and SCR, dust and denitrification filter technology, and removal technology using NO oxidation.

The Separation of Vanadium and Tungsten from Spent Selective Catalytic Reduction Catalyst Leach Solution by Alamine 336 (탈질 폐촉매 침출액으로부터 Alamine 336에 의한 바나듐과 텅스텐의 분리)

  • Seongsu Kang;Gyeonghye Moon;In-Hyeok Choi;Dakyeong Baek;Kyoungkeun Yoo
    • Resources Recycling
    • /
    • v.33 no.3
    • /
    • pp.30-37
    • /
    • 2024
  • In this study, we investigated the separability of vanadium and tungsten from spent SCR (Selective Catalytic Reduction) catalyst leach solution by reduction of vanadium and solvent extraction using Alamine 336 and conducted experiments to optimize process conditions. It is difficult to separate vanadium and tungsten due to their similar chemical behavior, but tungsten can be selectively extracted from acidic solution when vanadium extraction is prevented by reducing anionic pentavalent vanadium to cationic tetravalent vanadium. The results showed that NaHSO3 was most suitable as a reducing agent, and the extraction efficiency of vanadium decreased and the separation efficiency increased as the amount of reducing agent added, reaction time, and temperature increased. When reducing NaHSO3 1.5 eq, 60 min, and 60℃, which are optimal conditions of reduction, vanadium and tungsten were effectively separated with vanadium extraction efficiency of 5.8%, tungsten extraction efficiency of 99%, and separation factor of vanadium and tungsten of 7,564.

Microbial styrene monooxygenase-catalyzed asymmetric synthesis of enantiopure styrene oxide derivatives (미생물 유래 Styrene monooxygenase를 이용한 광학활성 styrene oxide 유도체의 비대칭합성)

  • Lee, Eun-Yeol;Park, Sung-Hoon
    • KSBB Journal
    • /
    • v.24 no.3
    • /
    • pp.239-245
    • /
    • 2009
  • Enantiopure styrene oxide derivatives are versatile building blocks for the synthesis of enantiopure pharmaceuticals. Styrene monooxygenase (SMO) catalyzes an asymmetric addition of an oxygen atom into a double bond of vinylaromatic compounds. SMO is a commercially potential biocatalyst to synthesize a variety of enantiopure epoxides with high enantiopurity and recovery yield. In this paper development of SMO biocatalyst and commercial feasibility of SMO-catalyzed asymmetric synthesis of enantiopure stylers oxide derivatives are reviewed.

A Study on the Regeneration of SCR Catalyst Deactivated by Unburned Carbon Deposition (탄소침적으로 피독된 탈질 촉매의 재생에 관한 연구)

  • Moon, Seung-Hyun;Lee, Seung-Jae;Ryu, In-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.10
    • /
    • pp.928-935
    • /
    • 2010
  • A bag filter system was partially burnt down during a trial run of waste wood incineration boiler. This brought about unburned hydrocarbon which caused a rapid deactivation of low temperature SCR catalyst set up in two stage after the bag filter. The deactivated catalyst was investigated in order to trace the origin by several characterization methods such as XRD, EDX, BET, TGA, SEM. The deactivated catalyst was regenerated by different methods such as acid washing, water washing in ultrasonication, and calcination treatment under air condition. It is found the calcination treatment under air condition at $450^{\circ}C$ for 2 hours to be the best regeneration method. The catalytic activity was measured in the form of 2 cm ${\times}$ 2 cm ${\times}$ 10 cm (catalyst weight 10 g) honeycomb type. A deNOx efficiency of the regenerated catalyst showed 100% at $180^{\circ}C$ which is the same level of fresh one.

Liquid Phase Hydrogenation of Croton Aldehyde with Nickel Catalysts (니켈촉매에 의한 크로톤 알데히드의 액상 수소첨가반응)

  • Lee, Hak Sung;Park, Young Hae;Kim, Yong Sup
    • Applied Chemistry for Engineering
    • /
    • v.5 no.3
    • /
    • pp.509-516
    • /
    • 1994
  • Liquid phase hydrogenation come into use for the removal process of unsaturated hydrocarbon such as croton aldehyde. The croton aldehyde is generated in a very small amount as by-product in the ethanol production, and it is converted into n-butanol through hydrogenation. Liquid phase hydrogenation is low energy consumption process as compared with gas phase hydrogenation. The nickel catalyst is selected with respect to the economic aspect such as durability and cost. The analysis of the conversion were performed by method of the PMT(permangante time) test. The PMT was sharply decreased as the initial concentrations of croton aldehyde in the ethanol solution were increased. The hydrogenation of croton aldehyde to n-butanol was carried out in sequence after the saturation of the carbon-carbon double bond. The formation of both butyraldehyde and n-butanol followed zero order kinetics. Within expermental conditions the PMT gets longer as reaction temperature goes higer and as LHSV becomes slower, while the reaction pressure has almost no relation with PMT.

  • PDF

Computational Fluid Dynamics(CFD) Simulation and in situ Experimental Validation for the Urea-Based Selective Non-Catalytic Reduction(SNCR) Process in a Municipal Incinerator (생활폐기물 소각장 2차 연소로에서 요소용액을 이용한 선택적무촉매환원 공정에 대한 전산유체역학 모사 및 현장 검증)

  • Kang, Tae-Ho;Nguyen, Thanh D.B.;Lim, Young-Il;Kim, Seong-Joon;Eom, Won-Hyeon;Yoo, Kyung-Seun
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.630-638
    • /
    • 2009
  • A computational fluid dynamics(CFD) model is developed and validated with on-site experiments for a urea-based SNCR(selective non-catalytic reduction) process to reduce the nitrogen oxides($NO_x$) in a municipal incinerator. The three-dimensional turbulent reacting flow CFD model having a seven global reaction mechanism under the condition of low CO concentration and 12% excess air and droplet evaporation is used for fluid dynamics simulation of the SNCR process installed in the incinerator. In this SNCR process, urea solution and atomizing air were injected into the secondary combustor, using one front nozzle and two side nozzles. The exit temperature($980^{\circ}C$) of simulation has the same value as in situ experiment one. The $NO_x$ reduction efficiencies of 57% and 59% are obtained from the experiment and CFD simulation, respectively at NSR=1.8(normalized stoichiometric ratio) for the equal flow rate ratio from the three nozzles. It is observed in the CFD simulations with varying the flowrate ratio of the three nozzles that the injection of a two times larger front nozzle flowrate than the side nozzle flowrate produces 8% higher $NO_x$ reduction efficiency than the injection of the equal ratio flowrate in each nozzle.

NOx Reduction in Flue Gas Using Ammonia and Urea solution (암모니아와 요소용액을 이용한 배출가스내 질소산화물 저감 비교 평가)

  • 임영일;이정빈;유경선;김상돈
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.236-239
    • /
    • 1995
  • 50 kW$_{th}$ 용량의 기체연료버너에서 암모니아 기체와 요소용액을 이용한 선택적 무촉매 환원법 (SNCR;Selective Non-catalytic Reduction) 으로 질소산화물 (NOx) 저감에 관하여 연구하였다. 암모니아는 요소요액보다 더 낮은 반응온도에서 더 높은 효율을 보여주지만 경제성과 암모니아의 부식성 및 맹독성으로 인하여 취급하기에 곤란한 점이 있다. 반면에 요소용액은 적절한 액상첨가제와 기상첨가제를 사용하여 넓은 반응온도범위에서 높은 효율을 얻을 수 있으며 공정상의 조업비를 절감할 수 있다. 본 실험에서는 액상 첨가제인 $CH_3$OH 와 $C_2$H$_{5}$OH 을 사용하여 5$0^{\circ}C$ 정도의 최적반응온도 감소를 얻었으며 LPG 와 합성가스(CH$_4$:CO:H$_2$:$CO_2$=1:4:4:2) 틀 기상 첨가제로 사용하여 높은 질소산화물 저감 효율을 관찰하였다.

  • PDF