• Title/Summary/Keyword: 선삭가공

Search Result 208, Processing Time 0.029 seconds

선삭가공에 있어서 채터진동의 검출에 관한 연구(I)

  • 구연욱;정의식;남궁석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.121-126
    • /
    • 1991
  • 기계가공에서 발생하는 채터진도에 대한 발생기구나 이론적인 해석방법에 관하여는 많은 연구 가이루어져 왔으나, 그 발생점을 객관적으로 판정하기위한 엄밀한 규정이 마련되어 있지 않기 때문에 현재까지 공작기계의 성능평가에 하나의 지표가 되고 있는 채터진동 발생점의 판정에는 주로 인간의 귀나 눈에 의한 감각적인 판단방법에 의존하고 있는 실정이다. 본 연구에서는 객관적인 채터진동 발생점의 판정 및 그의 in-process 검출방법을 확립할 목적으로, 이를 이룩하는데 절삭저항의 이용 가능성을 실험적 인 방법으로 검토하고 있다.

The Machinability Estimation Depending on Cutting Condition in A16061-T6 Turning Operations (A16061-T6의 선삭가공에서 가공조건에 따른 절삭특성 평가)

  • Choi, Tae-Kyu;Kim, Jeong-Suk;Park, Jin-Hyo;Lim, Hak-Jin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.675-680
    • /
    • 2009
  • Because of high specific stiffness, the aluminum alloy has been used for various industry field. Specially, the heat-treated aluminum alloy is difficult-to-machine material and machining test is necessary to evaluate and improve the machinability. In order to manufacture the functional part, appropriate cutting condition is selected by considering surface quality, machining time, and workpiece deflection by cutting force. In this investigation, the machinability of A16061-T6 is estimated by changing cutting conditions. The variable cutting conditions are cutting speed, depth of cutting, and feed rate. The estimation is done by analysis of cutting force, surface roughness, and surface shape according to the change of cutting conditions.

  • PDF

Chip Breaking Prediction in Turning Process Considering Cutting Conditions and Chip Breaker Parameters (절삭조건과 칩브레이커 형상변수를 고려한 선삭 가공시의 칩절단 예측)

  • Choi, Jin-Pil;Lee, Sang-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.191-199
    • /
    • 1999
  • In the continuous cutting process such as turning operation, chip control is thought very important to achieve the unmanned manufacturing system. The prediction of chip breakage under the given conditions is a substantial element for chip control. In this paper, a systematic approach to know the chip breaking region is represented under the concept of equivalent parameters. to Verify the suggested model, cutting experiments are executed with a commercial type and two other type chip breakers which have modified chip breaker parameters such as land width, groove width and nose radius. predicted chip breaking regions using the 3D cutting model agrees with those obtained from the experiments.

  • PDF

Interpretation of Wood Processing Method by Tool Trace Analysis for Wooden Artifacts Excavated from Imdang-dong Site, Gyeongsan, Korea (경산 임당 유적 출토 목제유물의 도구흔적 분석을 통한 목재 가공 방법의 해석)

  • Lee, Kwang-Hee;Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.260-269
    • /
    • 2018
  • The purpose of this study is to interpretate the tools and the method of making wooden artifacts by analyzing the trace of tools on the surface of wooden artifacts estimated to be from the 2nd to the 4th century. As a result of analyzing the trace of tools on the surface of 97 items of wood artifacts, it was confirmed that various tools such as rhizome, chisel, claw, hand knife and ax were used to make these artifacts. Particularly, the marks of the turning knife and the turning lathe were confirmed, and it was found that the method of turning operation was used at this time. In addition, it was confirmed that both the Nunjil (tangential process) and the Seonjil (longitudinal process) were used to produce the wooden container artifacts by turning operation. It observes that proper processing method operation was applied to manufacture wooden container artifact depending on its form and intended use.

A Study on the Tool Temperature Estimation for Different Cutting Conditions in Turning Using a Statistical Method (통계적 기법을 이용한 선삭가공 절삭조건에 따른 공구온도 예측)

  • 송길용;문홍현;박병규;김성청;이응석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.96-102
    • /
    • 2002
  • This study is on the estimation method of toot temperature for different tool nose radius and cutting conditions in turning. Experimental analysis has been performed in different cutting conditions such as cutting speed, feed rate, and depth of cut for the tool nose radius, 0.4R, 0.8R using SMC workpiece materials. Tool temperature is measured using a thermo-couple which is embedded in the insert tip. Using multiple linear regression method, the tool temperature can be determined as an exponential equation with cutting variables and tool nose diameters for the different tool materials. The equations determined in this study show a good correlation for the cutting conditions and can be used for a tool temperature estimation technique. The result indicates that the tool temperature decreases for increasing the tool nose radius in general. Also, nose radius hardly influences on the tool temperature compared with cutting speed, feed rate and depth of cut. This method will be useful for the estimation of tool life and temperature using limited experimental data for given cutting conditions.

Surface Roughness of Turned Aluminum in MQL (MQL 알루미늄 선삭가공의 표면거칠기)

  • Hou, Xiang-Yu;Jung, Jong-Yun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.1
    • /
    • pp.52-59
    • /
    • 2011
  • 가계가공은 절삭 부위의 냉각작용과 윤활작용을 위해 절삭유를 많이 소모한다. 절삭유는 염소계의 극압첨가제 등이 함유되어 있어 작업자들에게 유독할 뿐만 아니라 대기의 오염을 초래하여 청정생산을 저해하게 되므로 이런 전통적인 방법은 작업자의 직업병으로부터 보호와 환경보호를 위하여 새로운 가공방법으로 변경되어야만 한다. MQL 기계가공 방법은 절삭유를 아주 소량 소모하므로 청정생산을 위한 대안으로 떠오르고 있지만 많은 작업자들이 이에 대한 기술적인 확신이 부족하여 이 방식의 사용을 주저하고 있다. 본 연구는 MQL 가공 방식에서 가공의 특성을 파악하여 표면거칠기에 영향을 미치는 인자와 범위를 찾고자 다양한 실험을 계획하고 그 결과를 분석하였다. 실험의 계획에서는 각 가공의 특성을 잘 나타낼 수 있는 인자와 수준을 선정하고, 다양한 상황의 결과를 분석하여 MQL 가공의 특성과 최적의 가공조건을 도출하였다. 본 연구의 실험 및 분석의 결과로서, 절삭 파라미터와 그의 수준이 가공특성을 잘 반영할 수 있도록 적절히 선택된다면 MQL 기계가공은 표면거칠기 향상 및 원가절감이나 환경보호 측면에서 절삭유 윤활방식을 대체하는 green manufacturing을 위한 대안이 될 수 있음을 보였다.

Feed Optimization Based on Virtual Manufacturing for High-Efficiency Turning (고능률 선삭 가공을 위한 가상 가공 기반의 이송량 최적화)

  • Kang, You-Gu;Cho, Jae-Wan;Kim, Seok-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.9
    • /
    • pp.960-966
    • /
    • 2007
  • High-efficient machining, which means to machine a part in the least amount of time, is the most effective tool to improve productivity. In this study, a new feed optimization method based on virtual manufacturing was proposed to realize the high-efficient machining in turning process through the cutting power regulation. The cutting area was evaluated by using the Boolean intersection operation between the cutting tool and workpiece. And the cutting force and power were predicted from the cutting parameters such as feed, depth of cut, spindle speed, specific cutting force, and so on. Especially, the reliability of the proposed optimization method was validated by comparing the predicted and measured cutting forces. The simulation results showed that the proposed optimization method could effectively enhance the productivity in turning process.

Correlation analysis between cutting conditions and cylindricity in MQL turning (MQL 선삭가공에서 절삭조건과 원통도의 상관관계 분석)

  • Shin, Sung-Woo;Hwang, Young-Kug;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.74-81
    • /
    • 2009
  • At present, industries and researchers are looking for ways to reduce the use of lubricants because of ecological and economical reasons. Therefore, metal cutting is to move toward dry cutting or semi-dry cutting. One of the technologies is known as MQL machining. This paper presents an investigation into MQL machining with the objective of evaluating cylindricity and cooling effect for the turning process of SM45C. To reach this goal, cylindrical-outer-diameter turning experiments are carried out according to cutting conditions with fluid, MQL and dry machining methods. A cutting force, tool-shank temperature and cylindricity of workpiece are measured and analyzed. The correlation between cutting conditions and cylindricity are evaluated according to cooling lubricant environments.

  • PDF

Turning the Machining Characteristics of Feed-through Ceramics (피드스루용 세라믹의 선삭 가공 특성에 관한 연구)

  • Park, Se-Jin;Ha, Jun-Tae;Yang, Dong-Ho;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.81-86
    • /
    • 2020
  • A ceramic vacuum chamber feedthrough ceramic insulator is made of Al2O3; the manufacturing process involves filling alumina powder into a urethane mold and pressing it with a rubber press to produce a molded body. Thereafter, manufacturing is completed through primary shape processing, sintering, and secondary shape processing in the green body, which is a pressurized molding body, This work is intended to prevent defects in the first shape processing by improving the ceramic insulator in the green body, and to improve the productivity of the ceramic insulator by determining the optimal processing conditions.

Experimental Study on the Optimized Lubrication Conditions in MQL Turning of Workpieces with Taper Angle (테이퍼 각을 가진 소재의 MQL 선삭가공에서 최적 윤활 조건에 관한 실험적 연구)

  • Kim, Dong-Hyeon;Kang, Dong-Wi;Cha, Na-Hyeon;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.63-69
    • /
    • 2013
  • Many researchers are trying to reduce the use of lubrication fluids in metal cutting to obtain safety, environmental and economical benefits. The aim of this study is to determine the optimization lubrication conditions in minimum quantity lubrication(MQL) turning of workpieces with taper angle. This study has been considered about various conditions of MQL. The objective functions are cutting force and surface roughness. Design factors are nozzle diameter, nozzle angle, MQL supply pressure, distance between tool and nozzle and length of supply line. The cutting force and surface roughness were statistically analyzed by the use of the Box-Behnken method. As a results, optimum lubrication conditions were suggested and verification experiment has been performed. The results of this study are expected to help the selection of lubrication conditions in MQL turning.