• 제목/요약/키워드: 선박탐지

검색결과 166건 처리시간 0.023초

선박방사소음의 측정및 평가방법

  • 윤종락
    • 소음진동
    • /
    • 제8권2호
    • /
    • pp.232-238
    • /
    • 1998
  • 선박 방사소음은 군사적 목적의 수동소나가 탐지대상으로 하는 수중음향 표적이라 할 수 있다. 따라서 수동소나 운용자는 대잠전 수행이전에 다양한 선박들에 대한 방사소음을 측정, 분석하여 개별 선박 고유의 음향 특징을 수집함으로써 실전 상황에서 미지 선박이 탐지되는 경우 이들 자료를 식별의 기초자료로 활용하고자 한다. 또한 새로운 수동소나의 개발자나 스텔스 능력의 선박 설계자 역시 선박방사소음 특징자료를 필요로한다. 본 글은 선박방사소음의 발생기구, 측정시스템 및 측정자료의 분석 평가 기술을 연구분석한 내용이다.

  • PDF

위성 SAR 영상과 AIS을 활용한 선박 탐지 (Vessel Detection Using Satellite SAR Images and AIS Data)

  • 이경엽;홍상훈;윤보열;김윤수
    • 한국지리정보학회지
    • /
    • 제15권2호
    • /
    • pp.103-112
    • /
    • 2012
  • SAR(Synthetic Aperture Radar) 영상과 AIS(Automatic Identification System) 자료를 활용하여 선박 탐지 실험을 수행하였다. 2010년 5월, 2주간 서해안(인천 근해)의 다중시기 해외위성 SAR 영상인 TerraSAR-X, Cosmo-SkyMed(X-밴드), Radarsat-2(C-밴드)와 AIS 자료를 이용하였다. SAR 영상 분석을 위해 해양과 선박의 산란 특성과 SAR 영상과 AIS 자료의 기초 처리 방법을 기술하였다. 선박 식별을 위해서 임계값 설정 기법을 사용하였다. 선박 탐지 결과로 시계열 변화 탐지와 AIS 연동 선박 탐지 사례를 보인다. 이 결과를 통해 위성 SAR 영상과 AIS를 이용한 선박 탐지는 해양 관리에 유용하게 사용될 수 있을 것으로 사료된다.

광학 위성 영상 기반 선박탐지의 정확도 개선을 위한 딥러닝 초해상화 기술의 영향 분석 (Impact Analysis of Deep Learning Super-resolution Technology for Improving the Accuracy of Ship Detection Based on Optical Satellite Imagery)

  • 박성욱;김영호;김민식
    • 대한원격탐사학회지
    • /
    • 제38권5_1호
    • /
    • pp.559-570
    • /
    • 2022
  • 광학 위성 영상의 공간해상도가 낮게 되면 크기가 작은 객체들의 경우 객체 탐지의 어려움이 따른다. 따라서 본 연구에서는 위성 영상의 공간해상도를 향상시키는 초해상화(Super-resolution) 기술이 객체 탐지 정확도 향상에 대한 영향이 유의미한지 알아보고자 하였다. 쌍을 이루지 않는(unpaired) 초해상화 알고리즘을 이용하여 Sentinel-2 영상의 공간해상도를 3.2 m로 향상시켰으며, 객체 탐지 모델인 Faster-RCNN, RetinaNet, FCOS, S2ANet을 활용하여 초해상화 적용 유무에 따른 선박 탐지 정확도 변화를 확인했다. 그 결과 선박 탐지 모델의 성능 평가에서 초해상화가 적용된 영상으로 학습된 선박 탐지 모델들에서 Average Precision (AP)가 최소 12.3%, 최대 33.3% 향상됨을 확인하였고, 초해상화가 적용되지 않은 모델에 비해 미탐지 및 과탐지가 줄어듦을 보였다. 이는 초해상화 기술이 객체 탐지에서 중요한 전처리 단계가 될 수 있다는 것을 의미하고, 객체 탐지와 더불어 영상 기반의 다른 딥러닝 기술의 정확도 향상에도 크게 기여할 수 있을 것으로 기대된다.

인공 위성 사진 내 선박 탐지 정확도 향상을 위한 Watershed 알고리즘 기반 RoI 축소 기법 (Watershed Algorithm-Based RoI Reduction Techniques for Improving Ship Detection Accuracy in Satellite Imagery)

  • 이승재;윤지원
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권8호
    • /
    • pp.311-318
    • /
    • 2021
  • 해상 안보, 국제 동향 파악 등 다양한 이유로 해상 사진에서 선박을 탐지하고자하는 연구는 지속되어 왔다. 인공지능의 발달로 인해 사진 및 영상 내 객체 탐지를 위한 R-CNN 모델이 등장하였고 객체탐지의 성능이 비약적으로 상승하였다. R-CNN 모델을 이용한 해상 사진에서의 선박 탐지는 인공위성 사진에도 적용되기 시작하였다. 하지만 인공위성 사진은 넓은 지역을 투사하기 때문에 선박 외에도 차량, 지형, 건물 등 다양한 객체들이 선박으로 인식되는 경우가 있다. 본 논문에서는 R-CNN계열 모델을 이용한 인공위성 사진에서의 선박 탐지의 성능을 개선하기 위한 새로운 방법론을 제안한다. 표지자 기반 watershed 알고리즘을 통해 육지와 바다를 분리하고 morphology 연산을 수행하여 RoI를 한 차례 더 특정한 뒤 특정된 RoI에 R-CNN 계열 모델을 사용하여 선박을 탐지하여 오탐을 줄인다. 해당 방법을 이용하여 Faster R-CNN을 사용하였을 경우, Faster R-CNN만을 사용했을 때에 비해 오탐률을 80% 줄일 수 있었다.

단계적 임계치 결정을 통한 위성레이더이미지 내 선박 탐지 (Ship Detection from Satellite Radar Imagery using Stepwise Threshold Determination)

  • 전호군;조홍연
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2023년도 춘계학술대회
    • /
    • pp.152-153
    • /
    • 2023
  • 선박자동식별장치(AIS)는 데이터의 활용편의성으로 인해 해상교통평가에 많이 사용되어 왔다. 그러나 AIS는 지형물에 의한 전파방해, 도달거리 한계로 인해 거리에 따라 선박위치가 누락되는 문제가 있다. 한편 위성레이더를 이용하면 이러한 문제로부터 자유롭게 광범위한 해양영역에 분포한 선박위치를 파악할 수 있다. 이 연구에서는 합성개구레이더 Sentinel-1 이미지에 단계적으로 임계치를 결정하여 선박을 탐지하는 방법을 제시한다. 제시된 방법은 기존의 이동창 기반 임계치 결정방법에 비해 최대 25배 빠른 탐지 속도를 보였으며, AIS와의 매칭률에서는 유사한 결과를 보였다.

  • PDF

Automatic Detection Approach of Ship using RADARSAT-1 Synthetic Aperture Radar

  • Yang, Chan-Su
    • 해양환경안전학회지
    • /
    • 제14권2호
    • /
    • pp.163-168
    • /
    • 2008
  • 인공위성 원격탐사를 이용한 선박탐지는 주요 적용 분야 중 하나로, 광역의 환경 감시와 해상보안에 적용되고 있다. 이를 통하여 어장을 포함한 해상교통을 모니터링할 수 있으며, 기름유출 선박을 찾기도 한다. 본 연구에서는, RADARSAT의 합성개구레이더(SAR) 영상을 기반으로 개발한 자동선박탐지기법을 제시하고, 2004년 8월 6일에 얻어진 영상에 적용을 하여 현장 자료와의 비교를 실시하였다. 선박탐지알고리듬은 보정, 랜드마스킹, 필터링, 위치 등록 그리고 식별의 5단계로 구성된다. 울산항을 중심으로 이루어진 위성 촬영시점의 풍속은 최대 0.4m/s이었다. 전장이 68m 이상인 묘박지의 선박을 중심으로 한 선박 탐지 결과는 울산 항만교통정보시스템의 레이더정보와 잘 일치하였다. 바지선과 같은 소형선박의 경우, SAR에 의한 선박 탐지 능력이 육상에 설치된 레이더보다 더 높은 경우도 있었다. 또한, SAR 레이더 산란 단면적(RCS)을 이용하여 선박의 길이와 폭을 계산하였으나, 레이오버와 그림자 효과 때문에 실제 값보다 비교적 높게 추정되었다.

  • PDF

Sentinel-2A 위성자료를 활용한 선박 및 후류 탐지 개선 (Improved Ship and Wake Detection Using Sentinel-2A Satellite Data)

  • 전우진;서민지;성노훈;최성원;심수영;변유경;한경수
    • 대한원격탐사학회지
    • /
    • 제37권3호
    • /
    • pp.559-566
    • /
    • 2021
  • 최근 증가된 해상 교통량의 영향으로 지속적으로 발생하는 선박사고에 대한 신속한 탐지 및 대처가 필요하다. 이를 위해, 광역 범위로 실시간 모니터링이 가능한 위성영상을 기반으로 선박탐지 연구가 활발히 수행되고 있다. 그러나, 분광특성을 활용하여 선박탐지를 수행한 선행연구에서는 후류(Wake) 제거를 수행하지 않아 후류가 선박으로 오탐지될 가능성이 존재한다. 이에 본 연구에서는 Ship Detection Index (SDI)를 이용하여 Sentinel-2A/Multispectral Instrument (MSI) 위성영상에서 선박탐지를 수행하고 선박과 후류의 분광특성 차이를 기반으로 하는 Wake Detection Index (WDI)를 활용하여 후류를 제거하였다. 본 연구의 선박탐지 알고리즘의 정확도 검증을 위해 Probability of detection (POD), False alarm rate (FAR) 지수를 활용하였으며, 검증 결과 SDI만 적용한 결과에 비해 POD는 유사하게 나타나고 FAR는 6.4% 개선되었다.

이중 편파 Sentinel-1 SAR 영상의 편파 지표를 활용한 인공지능 기반 선박 탐지 (Exploitation of Dual-polarimetric Index of Sentinel-1 SAR Data in Vessel Detection Utilizing Machine Learning)

  • 송주영;김덕진;김준우;이성뢰
    • 대한원격탐사학회지
    • /
    • 제38권5_2호
    • /
    • pp.737-746
    • /
    • 2022
  • 전천후 자료 취득이 가능한 SAR 영상을 기반으로 한 선박 탐지와 인공지능 기반 탐지 알고리즘과 함께 사용하는 것은 안정적인 선박 모니터링에 효과적이다. 기존의 SAR 영상에서는 인공지능 기반 선박 탐지 알고리즘에 진폭 영상만을 주로 사용하였으며, 물체의 산란 특성을 구분할 수 있는 다중 편파 SAR 영상의 편파 지표는 사용되지 않았다. 이에, 본 연구에서는 이중 편파 Sentinel-1 SAR 영상으로부터 고유값 분해를 통해 취득한 4개의 편파 지표인 H, p1, DoP, DPRVI와 방사 보정을 통해 취득한 2개 편파의 산란계수인 γ0, VV, γ0, VH를 이용하여 총 6개의 밴드를 가진 SAR 영상 52장의 데이터베이스를 구축하고, 이와 상응하는 시간에 취득한 선박의 실시간 위치 및 속도 정보인 AIS 자료를 사용하여 학습자료를 추출하였다. 구축된 밴드 조합에 대해 선박탐지 정확도를 평가한 결과, 이중 편파 지표를 진폭과 함께 사용한 경우 진폭 값만을 사용했을 때에 비해 개선된 탐지 정확도를 보였다.

RADARSAT SAR와 KOMPSAT EOC에 의한 선박 탐지의 검증: 현장 실험 (Validation of Ship Detection by the RADARSAT Synthetic Aperture Radar and KOMPSAT EOC: Field Experiments)

  • 양찬수;김선영
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2004년도 추계학술발표회
    • /
    • pp.43-47
    • /
    • 2004
  • 두 개의 다른 위성 센서 (RADARSATSAR와 KOMPSAT EOC)를 사용하여 선박탐지 실험을 실시하였으며, 탐지성능을 검토하였다. 목포항과 울산항을 대상으로 실시하였으며 필요에 따라 현장 검증 데이터를 얻기 위하여 위성 통과 시에 선박에 승선하여 선박정보를 포함하는 Sea Truth를 취득하였다. 또한 VTS레이더 정보를 위성데이터와 비교를 통하여 위치정보의 검증을 수행하였다. 광학과 마이크로파 원격탐사에 있어 그 특성의 차이는 뚜렷하였으나, 광학의 경우 선속 3.1kts 이상인 선박의 후류가 탐지되었으며, 마이크로파의 경우, 최대 6-7kts의 선박에 대해서도 후류의 탐지는 어려웠다. 그러나, 마이크로파는 다양한 선형을 반영한 신호가 sigma nought로 표현되므로 향후 선형 정보뿐만 아니라, 침로의 추출이 가능하다는 결론을 얻었다. 또한, 동일 선박이라 할지라도 신호강도의 차이에 의해 선박이 2개 이상으로 나타나는 현상도 파악되었다. 앞으로 다양한 해상환경 및 위성 관측 모드에 따른 추가 실험을 실시하여 자동 선박추출이 가능할 것으로 판단된다.

  • PDF

드론 영상 기반 조난 선박 탐지를 위한 해양 환경 시뮬레이션을 활용한 딥러닝 모델 개발 (Development of a Deep-Learning Model with Maritime Environment Simulation for Detection of Distress Ships from Drone Images)

  • 오정효;이주희;전의익;이임평
    • 대한원격탐사학회지
    • /
    • 제39권6_1호
    • /
    • pp.1451-1466
    • /
    • 2023
  • 해양 조난 사고에서 드론 활용이 빠르게 증가하고 있는 가운데, 특히 드론을 활용한 수색 구조 작업이 주목받고 있다. 조난 선박 및 기타 해양 표류체를 빠르게 탐지하기 위해 드론 영상을 활용한 딥러닝 모델들이 확장되고 있다. 그러나 이러한 모델을 효과적으로 학습시키기 위해서는 다양한 기상 조건과 선박 상태를 고려한 대량의 학습 데이터가 필요하다. 이에 대한 데이터 부족 문제는 학습된 모델의 성능 저하로 이어질 수 있다. 이에 본 연구는 해양 환경 시뮬레이터를 개발하고 데이터셋을 보강하여 조난 선박 탐지를 위한 딥러닝 모델의 성능 개선을 목표로 한다. 이 시뮬레이터는 눈, 비, 안개와 같은 다양한 기상 조건과 선박 상태, 그리고 드론과 센서의 규격과 특성을 설정할 수 있다. 시뮬레이션을 통해 얻은 데이터셋을 활용하여 딥러닝 모델을 학습시켰다. 이로써, 실제 드론 영상 데이터셋만을 사용한 모델과 비교했을 때 정확도와 재현율 등의 탐지 성능이 향상되었다. 특히, 비나 안개와 같은 악기상에서의 조난 선박 탐지 정확도(Average Precision, AP)는 약 2-5% 정도 향상되었으며 미탐지 비율이 현저히 낮아졌다. 이러한 결과는 개발된 시뮬레이터가 현실적이고 효과적으로 다양한 상황을 시뮬레이션하여 모델 학습에 기여함을 보여준다. 또한, 이에 기반한 조난 선박 탐지 딥러닝 모델은 해양 수색 및 구조 작업에서 효율적으로 활용될 것으로 기대된다.