• Title/Summary/Keyword: 선박용 연료전지

Search Result 33, Processing Time 0.028 seconds

Performance Analysis of Methanol Fueled Marine Solid Oxide Fuel Cell and Gas Turbine Hybrid Power System (메탄올 연료형 SOFC/GT 하이브리드시스템의 성능 평가)

  • Oh, Sae-Gin;Lim, Tae-Woo;Kim, Jong-Su;Kil, Byung-Lea;Park, Sang-Kyun;Kim, Mann-Eung;Lee, Kyung-Jin;Oh, Jin-Suk;Kim, Myoung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.8
    • /
    • pp.1040-1049
    • /
    • 2010
  • The strengthened regulations for atmospheric emissions from ships have caused a necessity of new, alternative power system in ships for the low pollutant emissions and the high energy efficiency. Recently, new kinds of propulsion power system such as fuel cell system, which use hydrogen as an energy source, have been sincerely considered. The purpose of this work is to predict the performance of methanol fueled SOFC/GT hybrid power system and to analyze the influence of operating temperature of stack, current density of stack, pressure ratio of turbine, temperature effectiveness of recuperator, turbine inlet temperature.

Diesel Desulfurization Reactor Design for Fuel Cell by Computational Fluid Dynamics (CFD 모델링을 통한 연료전지용 디젤의 흡착탈황 반응기 디자인)

  • Kwon, Sang Gu;Liu, Jay;Im, Do Jin
    • Clean Technology
    • /
    • v.21 no.4
    • /
    • pp.229-234
    • /
    • 2015
  • Recently, there are increasing numbers of study regarding hydrogen fuels but researches on desulfurization of diesel are rare. In this study, we performed diesel desulfurization reactor design by computation fluid dynamics simulation. By analyzing the change in flow and sulfur concentration at the outlet according to the changes in flow rate, reactor length, and reactor diameter, we have found the minimum catalyst performance for the given flow rate condition and the relation between the reactor performance and the reactor size and shape. We also studied the effects of permeability of the packed bed on the flow and sulfur concentration distribution. The present work can be utilized to design a diesel desulfurization reactor for a fuel cell used in ships. Furthermore, the present work also can be used to design low sulfur diesel supply in oil refineries and therefore contribute to the development of clean petrochemical technology.

Development of a 25kW-Class PEM Fuel Cell System for the Propulsion of a Leisure Boat (선박 추진용 25kW급 고분자전해질 연료전지 시스템 개발)

  • Han, In-Su;Jeong, Jeehoon;Kho, Back-Kyun;Choi, Choeng Hoon;Yu, Sungju;Shin, Hyun Khil
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.3
    • /
    • pp.271-279
    • /
    • 2014
  • A 25kW-class polymer electrolyte membrane (PEM) fuel cell system has been developed for the propulsion of a leisure boat. The fuel cell system was designed to satisfy various performance requirements, such as resistance to shock, stability under rolling and pitching oscillations, and durability under salinity condition, for its marine applications. Then, the major components including a 30kW-class PEM fuel cell stack, a DC-DC converter, a seawater cooling system, secondary battery packs, and balance of plants were developed for the fuel cell system. The PEM fuel cell stack employs a unique design structure called an anodic cascade-type stack design in which the anodic cells are divided into several blocks to maximize the fuel utilization without hydrogen recirculation devices. The performance evaluation results showed that the stack generated a maximum power of 31.0kW while maintaining a higher fuel utilization of 99.5% and an electrical efficiency of 56.1%. Combining the 30-kW stack with other components, the 25kW-class fuel cell system boat was fabricated for a leisure. As a result of testing, the fuel cell system reached an electrical efficiency of 48.0% at the maximum power of 25.6kW with stable operability. In the near future, two PEM fuel cell systems will be installed in a 20-m long leisure boat to supply electrical power up to 50kW for propelling the boat and for powering the auxiliary equipments.

Numerical Simulation of Catalyst Regeneration Process for Desulfurization Reactor (수치해석을 통한 탈황반응기용 촉매의 재생공정 분석)

  • Choi, Chang Yong;Kwon, Sang Gu;Liu, Jay;Im, Do Jin
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.140-147
    • /
    • 2017
  • In this study, we performed numerical simulation for the catalyst regeneration process of diesel desulfurization reactor. We analyzed the changes in regeneration process according to purge gas flow rate, catalyst permeability, reactor size, and heat loss of reactor. We have found that the regeneration process is very much affected by temperature changes whereas it is hardly affected by catalyst permeability and porosity. We also estimated the regeneration time according to purge gas flow rate and initial temperatures and have found that increasing purge gas temperature is more effect for fast regeneration. The present results can be utilized to design a regeneration process of diesel desulfurization reactor for a fuel cell used in ships. Furthermore, the present work also can be used to design low sulfur diesel supply in oil refineries and therefore contribute to the development of clean petrochemical technology.

Performance Analysis of Hybrid SOFC/GT/ST System for Marine Power Applications (선박동력용 SOFC/GT/ST 하이브리드시스템의 성능 평가에 관한 시뮬레이션)

  • Lee, Kyung-Jin;Oh, Jin-Suk;Kim, Sun-Hee;Oh, Sae-Gin;Lim, Tae-Woo;Kim, Jong-Su;Lee, Jae-Hyun;Park, Sang-Kyun;Kim, Mann-Eung;Kim, Myoung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.40-50
    • /
    • 2012
  • The electrification of the waste heat of stack is necessary to enhance the efficiency of fuel cell system. For this purpose, the hybrid SOFC/GT/ST system is suitable. The purpose of this work is to predict the performance of methane fueled SOFC/GT/ST hybrid power system and to analyze the influence of operating temperature of stack, current density of stack, and gas turbine pressure ratio. According to the analysis, it is proved that the SOFC/GT/ST hybrid system suppress the rapid decrease in efficiency and lead to the significant improvement of efficiency as compared with SOFC system.

Performance and Safety Analysis of Marine Solid Oxide Fuel Cell Power System (선박동력용 SOFC시스템의 성능 및 안전성 해석)

  • Kim, Myoung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.233-243
    • /
    • 2009
  • The strengthened regulations for atmospheric emissions from ships like MARPOL Annex VI have caused a necessity of new, alternative power system in ships for the low pollutant emissions and the high energy efficiency. This paper attempts to investigate the configuration of SOFC system for LNG tanker taking into account the safety and to analyze the influence of design parameters on the system performance. The simulation results provide the basic data for the design and efficiency improvement of SOFC system and indicate the guidelines for the safe system operation.

Performance and Safety Analysis of Marine Solid Oxide Fuel Cell and Gas Turbine Hybrid Power System (under Conditions of Turbine Cooling and Constant TIT) (선박동력용 SOFC/GT 하이브리드시스템의 성능 및 안전성 해석 (터빈 냉각 및 TIT 일정 조건을 중심으로))

  • Kim, Myoung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.484-496
    • /
    • 2009
  • The strengthened regulations for atmospheric emissions from ships like MARPOL Annex VI have caused a necessity of new, alternative power system in ships for the low pollutant emissions and the high energy efficiency. This paper attempts to investigate the configuration of SOFC/GT hybrid power system for LNG tanker taking into account the safety and to analyze the influence of design parameters on the system performance. The simulation results provide the basic data for the design and efficiency improvement of SOFC/GT hybrid system and indicate the guidelines for the safe system operation.

Performance Analysis of Hybrid SOFC/Uncooled GT System for Marine Power Applications (선박동력용 SOFC/GT(무냉각) 하이브리드시스템의 성능 평가)

  • Kim, Myoung-Hwan;Kil, Byung-Lea
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1050-1060
    • /
    • 2012
  • As an approach to high-efficiency of SOFC system, SOFC/GT Hybrid system is effective. However, if the output size of the system belongs to the marine class of dozens MWs, the introduction of the cooling system of GT system, which is used as sub-system, makes its related devices complicated and also makes its control difficult. Accordingly, for the marine use, SOFC/GT (non-cooling)Hybrid system looks more suitable than SOFC/GT(cooling)Hybrid system. This study established the SOFC/GT (non-cooling)Hybrid system, and examined the operating temperature & current density of the stack for the system, pressure ratio of the gas turbine, the influence of TIT(Turbine Inlet Temperature) on system performance, etc. through the simulation process. Through this research process, this study was able to confirm that electrical efficiency rises in spite of the increase in the required power for the air compressor, and there exists a limited range of temperatures for operation in TIT.

Technical Trends of Hydrogen Manufacture, Storage and Transportation System for Fuel Cell Vehicle (연료전지자동차용 수소제조와 저장·운반기술동향)

  • Kil, Sang-Cheol;Hwang, Young-Gil
    • Resources Recycling
    • /
    • v.25 no.1
    • /
    • pp.48-59
    • /
    • 2016
  • The earth has been warming due to $CO_2$ gas emissions from fossil fuel cars and a ship. So the hydrogen fuel cell vehicle(FCV) using hydrogen as a fossil fuel alternative energy is in the spotlight. Hyundai Motor Company of Korea and a car companies of the US, Japan, Germany is developing a FCV a competitive. Obtained hydrogen as a by-product of the coke plant, oil refineries, chemical plants of steel mill, coal is reacted with steam at high temperatures, methane gas, manufacture of high purity hydrogen Methane Steam Reforming and hydrogen detachable reforming method using the Pressure Swing Adsorption or Membrane Reforming technical or decomposition of water to produce electricity. Hydrogen is the electronic industry, metal and chemical industries, which are used as rocket fuel, etc. are used in factories, hospitals, home of the fuel Ene.Farm system or FCV. And a method of storing hydrogen is to store liquid hydrogen and a method for compressing normal hydrogen to the hydrogen container, by storing the latest hydride or Organic chemical hydride method is used to carry the hydrogen station. Korea is currently 13 hydrogen stations in place and in operation, plans to install a further 43 places.